IMDB_Sentiment_Analysis:鉴于大量的在线评论数据(Amazon,IMDB等),情绪分析变得越来越重要。 在这个项目中,建立了一个情感分类器,用于评估一段文字的极性是正还是负。 情感分析是在Keras随附的IMDB数据集上完成的。 它由25,000个训练样本(其中20%是验证样本)和25,000个测试样本组成。 数据集中的所有单词均已预先标记。 使用自训练的单词嵌入(Keras嵌入层)。 我训练了不同的模型,其中一个模型包含一个LSTM层。 它在10个时元上的准确度为84%。 第二个示

上传者: 42175035 | 上传时间: 2021-12-21 16:05:55 | 文件大小: 95KB | 文件类型: -
IMDB_Sentiment_Analysis 鉴于大量的在线评论数据(Amazon,IMDB等),情绪分析变得越来越重要。 在这个项目中,建立了一个情感分类器,用于评估一段文字的极性是正还是负。 情感分析是在Keras随附的IMDB数据集上完成的。 它由25,000个训练样本(其中20%是验证样本)和25,000个测试样本组成。 数据集中的所有单词均已预先标记。 使用自训练的单词嵌入(Keras嵌入层)。 我训练了不同的模型,其中一个模型包含一个LSTM层。 它在10个时元上的准确度为84%。 第二个示例由两组Conv1D和MaxPooling1D图层组成,后面是标准GRU图层。 观察到85%的准确性。 我已经将CuDNN层用于LSTM和GRU,因为它们在GPU上的速度比标准LSTM和GRU层快得多。 所有实现都是使用Keras进行的。 另一个具有RMS Prop精度的示例为84%,而

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明