Segmentation:包含用于MoNuSeg 2018挑战的语义分段的代码-源码

上传者: 42172572 | 上传时间: 2021-09-15 09:50:36 | 文件大小: 96.35MB | 文件类型: ZIP
存储库。 注意:如果您有兴趣使用它,请随时 :star: 回购,所以我们知道! 当前功能 配置文件 训练图 明智的输入 自述文件的更新 推理文件 定量结果 结果可视化 训练文件 目录结构 重量随模型节省 传奇 解决 工作进行中 数据集 通过仔细注释几名患有不同器官肿瘤并在多家医院被诊断出的患者的组织图像,获得了针对这一挑战的数据集。 通过从TCGA存档下载以40倍放大倍率捕获的H&E染色的组织图像来创建此数据集。 H&E染色是提高组织切片对比度的常规方法,通常用于肿瘤评估(分级,分期等)。 考虑到跨多个器官和患者的核外观的多样性,以及在多家医院采用的染色方案的丰富性,训练数据集将使开发健壮且可通用的核分割技术成为可能。 训练数据 包含30张图像和约22,000个核边界注释的训练数据已作为2017年IEEE Transactions on Medical Imaging上的

文件下载

资源详情

[{"title":"( 46 个子文件 96.35MB ) Segmentation:包含用于MoNuSeg 2018挑战的语义分段的代码-源码","children":[{"title":"Segmentation-master","children":[{"title":".gitignore <span style='color:#111;'> 68B </span>","children":null,"spread":false},{"title":"Results","children":[{"title":"outputs","children":[{"title":"TCGA-HT-8564-01Z-00-DX1.jpg <span style='color:#111;'> 91.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"plots","children":[{"title":"DEEPLAB","children":[{"title":"train_loss.png <span style='color:#111;'> 32.48KB </span>","children":null,"spread":false},{"title":"train_dice.png <span style='color:#111;'> 33.49KB </span>","children":null,"spread":false},{"title":"train_f1.png <span style='color:#111;'> 30.01KB </span>","children":null,"spread":false},{"title":"train_accuracy.png <span style='color:#111;'> 33.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"SEGNET","children":[{"title":"train_loss.png <span style='color:#111;'> 33.73KB </span>","children":null,"spread":false},{"title":"train_dice.png <span style='color:#111;'> 44.30KB </span>","children":null,"spread":false},{"title":"train_f1.png <span style='color:#111;'> 37.36KB </span>","children":null,"spread":false},{"title":"train_accuracy.png <span style='color:#111;'> 40.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"UNETMOD","children":[{"title":"train_loss.png <span style='color:#111;'> 33.93KB </span>","children":null,"spread":false},{"title":"train_dice.png <span style='color:#111;'> 37.90KB </span>","children":null,"spread":false},{"title":"train_f1.png <span style='color:#111;'> 33.91KB </span>","children":null,"spread":false},{"title":"train_accuracy.png <span style='color:#111;'> 34.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"UNET","children":[{"title":"train_loss.png <span style='color:#111;'> 45.16KB </span>","children":null,"spread":false},{"title":"train_dice.png <span style='color:#111;'> 40.74KB </span>","children":null,"spread":false},{"title":"train_f1.png <span style='color:#111;'> 37.07KB </span>","children":null,"spread":false},{"title":"train_accuracy.png <span style='color:#111;'> 52.63KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"temp.py <span style='color:#111;'> 875B </span>","children":null,"spread":false},{"title":"Train_Bak.py <span style='color:#111;'> 7.35KB </span>","children":null,"spread":false},{"title":"Code","children":[{"title":"utils","children":[{"title":"lossfunctions.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"metricfunctions.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"network","children":[{"title":"segnet","children":[{"title":"segnet_plot.png <span style='color:#111;'> 139.94KB </span>","children":null,"spread":false},{"title":"custom_layers.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"segnet.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 29B </span>","children":null,"spread":false}],"spread":true},{"title":"unet","children":[{"title":"unet_plot.png <span style='color:#111;'> 126.27KB </span>","children":null,"spread":false},{"title":"u_net.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 27B </span>","children":null,"spread":false}],"spread":true},{"title":"unetmod","children":[{"title":"u_net_mod.py <span style='color:#111;'> 10.14KB </span>","children":null,"spread":false},{"title":"unet_plot.png <span style='color:#111;'> 263.41KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 27B </span>","children":null,"spread":false}],"spread":true},{"title":"deeplab","children":[{"title":"deeplab.py <span style='color:#111;'> 21.11KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"Datasets","children":[{"title":"Samples","children":[{"title":"TCGA-RD-A8N9-01A-01-TS1_bin_mask.png <span style='color:#111;'> 50.55KB </span>","children":null,"spread":false},{"title":"Test","children":[{"title":"TCGA-HT-8564-01Z-00-DX1.png <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false},{"title":"TCGA-HT-8564-01Z-00-DX1_bin_mask.png <span style='color:#111;'> 19.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"TCGA-RD-A8N9-01A-01-TS1.png <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false}],"spread":true},{"title":"MonuSeg-20200319T073151Z-001.zip <span style='color:#111;'> 91.67MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 26B </span>","children":null,"spread":false}],"spread":true},{"title":"Test.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"config.json <span style='color:#111;'> 573B </span>","children":null,"spread":false},{"title":"Train.py <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明