上传者: 42168830
|
上传时间: 2021-10-21 23:11:40
|
文件大小: 121.31MB
|
文件类型: -
使用深度学习进行图像伪造
使用深度学习的图像伪造检测,在PyTorch中实现。
提议
整个框架:首先,将RGB图像分为重叠的块(64x64)。 然后,在被网络打分之前,将RGB色块转换为YCrCb颜色通道。 最后,设计了一个后期处理阶段,以完善网络的预测,并就图像的身份验证做出最终结论。
深度神经网络改编自MobileNet-V2。 但是,我们修改了原始MobileNet-V2,使其与我们的问题更加相关。 下图描述了体系结构修改。
实验结果
我们已经对模型配置进行了全面评估,以显示哪个因素可以改善模型的最终性能。 为了解决这个问题,我们定义了与MobileNetV2(称为MBN2)一起作为核心的六种配置。 要考虑两个颜色通道,即RGB和YCrCb。 此外,还考虑了三种MobileNetV2架构进行比较。 第一个体系结构是从零开始训练的MobileNetV2,第二个体系结构是通过Image