AGIS-Net:[SIGGRAPH Asia 2019]通过单阶段少量学习进行艺术字形图像合成

上传者: 42166261 | 上传时间: 2022-11-03 20:56:33 | 文件大小: 34.58MB | 文件类型: ZIP
地理信息系统网 介绍 这是通过单阶段很少学习的艺术字形图像合成的PyTorch官方实现。 抽象 自动生成艺术字形图像是一项艰巨的任务,吸引了许多研究兴趣。 先前的方法要么专门设计用于形状合成,要么专注于纹理转移。 在本文中,我们提出了一种新颖的模型AGIS-Net,该模型可以仅用几个样式化的样本就可以在一个阶段中同时传递形状和纹理样式。 为了实现这一目标,我们首先通过使用两个编码器来解开内容和样式的表示形式,以确保多内容和多样式的生成。 然后,我们利用两个协同工作的解码器来同时生成字形形状图像及其纹理图像。 此外,我们引入了局部纹理细化损失,以进一步提高合成纹理的质量。 通过这种方式,我们的单

文件下载

资源详情

[{"title":"( 46 个子文件 34.58MB ) AGIS-Net:[SIGGRAPH Asia 2019]通过单阶段少量学习进行艺术字形图像合成","children":[{"title":"AGIS-Net-master","children":[{"title":"models","children":[{"title":"agisnet_model.py <span style='color:#111;'> 14.31KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 58.52KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"vgg.py <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"paper","children":[{"title":"AGIS-Net.pdf <span style='color:#111;'> 20.89MB </span>","children":null,"spread":false},{"title":"AGIS-Net_supplementary_material.pdf <span style='color:#111;'> 9.24MB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"image_folder.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"multi_fusion_dataset.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"generate_dataset_example.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"few_fusion_dataset.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"cn_few_fusion_dataset.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"cn_multi_fusion_dataset.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"_config.yml <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 18.76KB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"11032_A.png <span style='color:#111;'> 9.18KB </span>","children":null,"spread":false},{"title":"across_language.png <span style='color:#111;'> 597.93KB </span>","children":null,"spread":false},{"title":"comparison.png <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false},{"title":"skipconnection.png <span style='color:#111;'> 123.50KB </span>","children":null,"spread":false},{"title":"localpatch.png <span style='color:#111;'> 237.51KB </span>","children":null,"spread":false},{"title":"comparison-cn.png <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"architecture.png <span style='color:#111;'> 709.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"options","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"train_options.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 9.50KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"util","children":[{"title":"visualizer.py <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"html.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"scripts","children":[{"title":"test_base_gray_color.sh <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"test_skeleton_gray_color.sh <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"train.sh <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"install_conda.sh <span style='color:#111;'> 119B </span>","children":null,"spread":false},{"title":"test_base_gray_texture.sh <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"install_pip.sh <span style='color:#111;'> 93B </span>","children":null,"spread":false},{"title":"test_skeleton_gray_texture.sh <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"download_dataset.sh <span style='color:#111;'> 540B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明