Gesture-recognition-using-CNNLSTM:使用GRIT数据集,构建了将2D CNN与LSTM相结合的模型,以从webCam视频提要中执行实时手势识别。 也使用LSTM建立了使用3D CNN的另一个模型-源码

上传者: 42166261 | 上传时间: 2021-10-11 17:53:31 | 文件大小: 17KB | 文件类型: -
使用手势识别的CNNLSTM 使用GRIT数据集,构建了将2D CNN与LSTM相结合的模型,以从webCam视频提要中执行实时手势识别。 也使用LSTM建立了使用3D CNN的另一个模型。 目标 构建能够实时检测视频中手势的计算机视觉深度学习模型。 模型应能够在低端设备上运行。 (没有GPU) 模型应该可以快速训练(30分钟内进行训练) 在每个手势动作中使用有限的样本来提取可用的准确性。 预先处理 由于我们的动机是运动识别,因此我们首先必须检测帧序列之间的运动。 我使用时差法。 时间差异涉及两个或三个连续帧之间的差异,然后凝结连续帧之间的差异以提取运动对象的运动。 它非常容易且快速地进行计算,并且在动态环境中具有更好的性能。 使用等式计算差分图像: Δ = (

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明