cakechat:CakeChat:情感生成对话系统

上传者: 42165712 | 上传时间: 2025-03-26 08:39:20 | 文件大小: 466KB | 文件类型: ZIP
在顶部的注释:该项目是未维护的。 基于变压器的对话框模型可以更好地工作,我们建议使用它们而不是基于RNN的CakeChat。 参见例如 CakeChat:情感生成对话系统 CakeChat是聊天机器人的后端,能够通过对话表达情感。 CakeChat是建立在和 。 该代码具有灵活性,并允许通过任意分类变量来调节模型的响应。 例如,您可以训练自己的基于角色的神经对话模型或创建情感聊天机 。 主要要求 python 3.5.2 张量流1.12.2 keras 2.2.4 目录 网络架构和功能 模型: 用于处理深层对话上下文的分层递归编码器-解码器(HRED)架构 。 具有GRU单元的多层RNN。 话语级编码器的第一层始终是双向的。 默认情况下,在推断过程中,使用CuDNNGRU实现可实现约25%的加速。 思想向量在每个解码步骤被馈送到解码器。 解码器可以以任何类别标签为条件,例如,情感标签或角色ID。 词嵌入层: 可以使用在您的语料库上训练的w2v模型进行初始化。 嵌入层可以与网络的其他权重一起固定或微调。 解码 4种不同的响应生成算法:“采样”,“ beamse

文件下载

资源详情

[{"title":"( 99 个子文件 466KB ) cakechat:CakeChat:情感生成对话系统","children":[{"title":"cakechat-master","children":[{"title":".gitignore <span style='color:#111;'> 118B </span>","children":null,"spread":false},{"title":"requirements-local.txt <span style='color:#111;'> 39B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"cakechat","children":[{"title":"api","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"v1","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"server.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 664B </span>","children":null,"spread":false},{"title":"response.py <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dialog_model","children":[{"title":"abstract_model.py <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"quality","children":[{"title":"__init__.py <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"logging.py <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"metrics","children":[{"title":"distinctness.py <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"plotters.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ranking.py <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"perplexity.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"lexical_simlarity.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 740B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"abstract_callbacks.py <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"factory.py <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"inference","children":[{"title":"predictor.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"reranking.py <span style='color:#111;'> 5.47KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"predict.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"sampling.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false}],"spread":false},{"title":"service_tokens.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"factory.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"candidates","children":[{"title":"beamsearch.py <span style='color:#111;'> 16.39KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"abstract_generator.py <span style='color:#111;'> 222B </span>","children":null,"spread":false},{"title":"sampling.py <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"model_utils.py <span style='color:#111;'> 13.68KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"keras_model.py <span style='color:#111;'> 12.12KB </span>","children":null,"spread":false},{"title":"inference_model.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 34.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils","children":[{"title":"env.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"data_types.py <span style='color:#111;'> 152B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"tee_file.py <span style='color:#111;'> 885B </span>","children":null,"spread":false},{"title":"w2v","children":[{"title":"__init__.py <span style='color:#111;'> 96B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"logger_utils.py <span style='color:#111;'> 853B </span>","children":null,"spread":false},{"title":"files_utils.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"offense_detector","children":[{"title":"data","children":[{"title":"offensive_phrases.csv <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 69B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 276B </span>","children":null,"spread":false},{"title":"detector.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"telegram_bot_client.py <span style='color:#111;'> 6.54KB </span>","children":null,"spread":false},{"title":"s3","children":[{"title":"resolver.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 140B </span>","children":null,"spread":false},{"title":"bucket.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataset_loader.py <span style='color:#111;'> 8.97KB </span>","children":null,"spread":false},{"title":"profile.py <span style='color:#111;'> 651B </span>","children":null,"spread":false},{"title":"data_structures.py <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"text_processing","children":[{"title":"__init__.py <span style='color:#111;'> 627B </span>","children":null,"spread":false},{"title":"dialog.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 786B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 287B </span>","children":null,"spread":false},{"title":"str_processor.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"corpus_iterator.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"config.py <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"conditions_index","children":[{"title":"c_idx_processed_dialogs.json <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":true},{"title":"quality","children":[{"title":"context_free_questions.txt <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"context_free_validation_set.txt <span style='color:#111;'> 16.44KB </span>","children":null,"spread":false},{"title":"context_free_test_set.txt <span style='color:#111;'> 33.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"tokens_index","children":[{"title":"t_idx_processed_dialogs.json <span style='color:#111;'> 936.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"corpora_processed","children":[{"title":"train_processed_dialogs.txt <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false},{"title":"val_processed_dialogs.txt <span style='color:#111;'> 30.47KB </span>","children":null,"spread":false},{"title":"test_processed_dialogs.txt <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"bin","children":[{"title":"cakechat_server.py <span style='color:#111;'> 397B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"stale.yml <span style='color:#111;'> 683B </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"fetch.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"generate_predictions.py <span style='color:#111;'> 7.36KB </span>","children":null,"spread":false},{"title":"prepare_index_files.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"quality","children":[{"title":"condition_quality.py <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"ranking_quality.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"prediction_distinctness.py <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_api.py <span style='color:#111;'> 967B </span>","children":null,"spread":false},{"title":"train_w2v.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"distributed_train.py <span style='color:#111;'> 682B </span>","children":null,"spread":false},{"title":"telegram_bot.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"generate_predictions_for_condition.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"dockerfiles","children":[{"title":"Dockerfile.cpu <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"Dockerfile.gpu <span style='color:#111;'> 807B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 24.25KB </span>","children":null,"spread":false},{"title":".style.yapf <span style='color:#111;'> 219B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明