[{"title":"( 27 个子文件 21.47MB ) 风能预测时间序列分析:实施了不同的时间序列模型来预测风能的产生。 风力发电考虑的因素是空气密度,风速,温度。 实施的模型:线性回归,多项式回归,Holt Winters,ARIMA-源码","children":[{"title":"Wind-energy-Forecast-Time-series-Analysis-master","children":[{"title":"Readme.txt <span style='color:#111;'> 391B </span>","children":null,"spread":false},{"title":"Wind Energy prediction.pdf <span style='color:#111;'> 534.94KB </span>","children":null,"spread":false},{"title":"Datasets","children":[{"title":"Temperature Data.csv <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"1703468.csv <span style='color:#111;'> 7.20MB </span>","children":null,"spread":false},{"title":"1703463.csv <span style='color:#111;'> 7.32MB </span>","children":null,"spread":false},{"title":"1705600.csv <span style='color:#111;'> 45.00MB </span>","children":null,"spread":false},{"title":"1.csv <span style='color:#111;'> 45.00MB </span>","children":null,"spread":false},{"title":"1703454.csv <span style='color:#111;'> 7.40MB </span>","children":null,"spread":false},{"title":"1703449.csv <span style='color:#111;'> 7.36MB </span>","children":null,"spread":false},{"title":"1703451.csv <span style='color:#111;'> 7.23MB </span>","children":null,"spread":false},{"title":"1703448.csv <span style='color:#111;'> 7.36MB </span>","children":null,"spread":false},{"title":"Dharshan Project.csv <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"Temperature Data.xlsx <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"1703472.csv <span style='color:#111;'> 6.99MB </span>","children":null,"spread":false},{"title":"Hourly Air Pressure","children":[{"title":"1.csv <span style='color:#111;'> 2.79MB </span>","children":null,"spread":false},{"title":"Airpressure.csv <span style='color:#111;'> 3.99MB </span>","children":null,"spread":false},{"title":".RData <span style='color:#111;'> 1017.44KB </span>","children":null,"spread":false},{"title":".Rhistory <span style='color:#111;'> 16.24KB </span>","children":null,"spread":false},{"title":"Temperature.csv <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"Data preperation for Air density.R <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"2.csv <span style='color:#111;'> 576.01KB </span>","children":null,"spread":false}],"spread":false},{"title":"1703456.csv <span style='color:#111;'> 7.40MB </span>","children":null,"spread":false},{"title":"1703470.csv <span style='color:#111;'> 7.34MB </span>","children":null,"spread":false},{"title":"Output file.csv <span style='color:#111;'> 72.58KB </span>","children":null,"spread":false},{"title":"2.csv <span style='color:#111;'> 9.02MB </span>","children":null,"spread":false},{"title":"1703459.csv <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false}],"spread":false},{"title":"ADM Project.R <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]