Intelligent-Fault-Diagnosis-Using-RL-源码

上传者: 42162216 | 上传时间: 2021-11-16 16:06:26 | 文件大小: 70.35MB | 文件类型: -
使用强化学习的智能故障诊断 问题陈述:使用智能代理执行条件分类,该智能代理学习类似于人类感知的分类 方法:使用堆叠式自动编码器提取潜在特征,并使用深度Q网络训练代理 数据集 我们的研究中使用的滚动轴承的故障数据是由凯斯西储大学(CWRU)收集的。 该数据集包含正常轴承和故障轴承的滚珠轴承测试数据。 在实验设置中,测量数据的采样频率为48KHz,该频率来自电机轴附近的测量。 有四种不同的条件: N:正常 如果:内部故障 OF:外部故障 RF:滚轴故障 为了验证所提出的方法,根据作为运行条件的轴的负载量将振动数据分为四组(A,B,C和D),这将导致不同的振动模式,从而增加振动的动态性。轴。 根据故障直径和故障位置,每组(例如A)包含10个不同的类别(1、2,...,10)。 A,B,C包含所有类,并且在这三个数据集中没有不可见的类。 平均而言,某个数据集下的每个类别包含480,000

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明