[ICLR 2020]对比表示蒸馏(CRD),以及最新知识蒸馏方法的基准-Python开发

上传者: 42161450 | 上传时间: 2021-09-07 15:36:28 | 文件大小: 48KB | 文件类型: ZIP
对比表示蒸馏(CRD),以及最新知识蒸馏方法的基准RepDistiller此回购协议:(1)涵盖以下ICLR 2020论文的实施:“对比表示蒸馏”(CRD)。 纸,项目页。 (2)在PyTorch中对12种最先进的知识提炼方法进行了基准测试,包括:(KD)-在神经网络中提炼知识(FitNet)-Fitnets:细深网的提示(AT)-更加关注注意:通过注意转移(SP)改善卷积神经网络的性能-相似性保留

文件下载

资源详情

[{"title":"( 41 个子文件 48KB ) [ICLR 2020]对比表示蒸馏(CRD),以及最新知识蒸馏方法的基准-Python开发","children":[{"title":"RepDistiller-master","children":[{"title":"train_teacher.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"distiller_zoo","children":[{"title":"PKT.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"SP.py <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"KDSVD.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"KD.py <span style='color:#111;'> 493B </span>","children":null,"spread":false},{"title":"NST.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 332B </span>","children":null,"spread":false},{"title":"AT.py <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"VID.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"FT.py <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"FSP.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"AB.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"FitNet.py <span style='color:#111;'> 332B </span>","children":null,"spread":false},{"title":"CC.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"RKD.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"models","children":[{"title":"util.py <span style='color:#111;'> 9.40KB </span>","children":null,"spread":false},{"title":"mobilenetv2.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"vgg.py <span style='color:#111;'> 6.81KB </span>","children":null,"spread":false},{"title":"classifier.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 962B </span>","children":null,"spread":false},{"title":"wrn.py <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"resnetv2.py <span style='color:#111;'> 6.75KB </span>","children":null,"spread":false},{"title":"ShuffleNetv1.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false},{"title":"ShuffleNetv2.py <span style='color:#111;'> 6.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"scripts","children":[{"title":"run_cifar_distill.sh <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"fetch_pretrained_teachers.sh <span style='color:#111;'> 953B </span>","children":null,"spread":false},{"title":"run_cifar_vanilla.sh <span style='color:#111;'> 305B </span>","children":null,"spread":false}],"spread":true},{"title":"helper","children":[{"title":"util.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"loops.py <span style='color:#111;'> 8.78KB </span>","children":null,"spread":false},{"title":"pretrain.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"train_student.py <span style='color:#111;'> 13.58KB </span>","children":null,"spread":false},{"title":"crd","children":[{"title":"criterion.py <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"memory.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"cifar100.py <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"imagenet.py <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.87KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明