dnn2gp:近似推理将深度网络转变为高斯过程(dnn2gp)

上传者: 42160376 | 上传时间: 2023-01-09 10:33:12 | 文件大小: 14.58MB | 文件类型: ZIP
从深度神经网络到高斯过程(dnn2gp) 该存储库包含用于重现论文结果的代码近似推理将深度网络转变为高斯过程 计算和可视化线性模型和GP 复制模型选择实验 结果可以在/results目录中轻松获得,并且可以通过运行来复制 python marglik.py --name of_choice 这将同时产生玩具和真实世界的实验,并将相应的测量结果以新的文件名保存到结果目录中。 然后可以通过运行生成图 python marglik_plots.py --name original # use our result files python marglik_plots.py --name of_choice # use your result files 计算和可视化内核及预测分布 我们使用预先训练的模型,这些模型保存在/models目录中,并且在CIFAR-10或MNIST上进行训练。

文件下载

资源详情

[{"title":"( 43 个子文件 14.58MB ) dnn2gp:近似推理将深度网络转变为高斯过程(dnn2gp)","children":[{"title":"dnn2gp-master","children":[{"title":"models","children":[{"title":"2_class_mnist_zone_lenet_vogn.tk <span style='color:#111;'> 343.27KB </span>","children":null,"spread":false},{"title":"cifar_lenet_vogn.tk <span style='color:#111;'> 243.81KB </span>","children":null,"spread":false},{"title":"full_mnist_lenet_adaml2.tk <span style='color:#111;'> 175.29KB </span>","children":null,"spread":false},{"title":"cifar_lenet_adam.tk <span style='color:#111;'> 243.81KB </span>","children":null,"spread":false},{"title":"full_mnist_lenet_vogn.tk <span style='color:#111;'> 348.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"marglik.py <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"kernel_and_predictive.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"figures","children":[{"title":"marglik_sigma_wine_laplace.pdf <span style='color:#111;'> 154.28KB </span>","children":null,"spread":false},{"title":"marglik_width_toy_laplace.pdf <span style='color:#111;'> 124.54KB </span>","children":null,"spread":false},{"title":"dnn2gp_schema.png <span style='color:#111;'> 779.89KB </span>","children":null,"spread":false},{"title":"marglik_delta_toy_fits.pdf <span style='color:#111;'> 134.15KB </span>","children":null,"spread":false},{"title":"marglik_delta_wine_laplace.pdf <span style='color:#111;'> 124.64KB </span>","children":null,"spread":false},{"title":"regression_uncertainty_vi.pdf <span style='color:#111;'> 184.01KB </span>","children":null,"spread":false},{"title":"regression_uncertainty_laplace.pdf <span style='color:#111;'> 185.18KB </span>","children":null,"spread":false},{"title":"marglik_width_wine_laplace.pdf <span style='color:#111;'> 124.29KB </span>","children":null,"spread":false},{"title":"marglik_delta_toy_VI.pdf <span style='color:#111;'> 153.90KB </span>","children":null,"spread":false},{"title":"marglik_delta_toy_laplace.pdf <span style='color:#111;'> 153.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"neurips2019_poster.pdf <span style='color:#111;'> 5.84MB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"snelson","children":[{"title":"test_inputs <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"train_outputs <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"train_inputs <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"marglik_uci.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"marglik_plots.py <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"reg_ms_sigma_wine.pkl <span style='color:#111;'> 2.99MB </span>","children":null,"spread":false},{"title":"reg_ms_width_wine.pkl <span style='color:#111;'> 2.98MB </span>","children":null,"spread":false},{"title":"reg_ms_width_original.pkl <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"reg_ms_delta_wine.pkl <span style='color:#111;'> 2.99MB </span>","children":null,"spread":false},{"title":"reg_ms_delta_original.pkl <span style='color:#111;'> 2.60MB </span>","children":null,"spread":false}],"spread":true},{"title":"kernel_and_predictive_plots.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"dnn2gp","children":[{"title":"variational_models.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"utilities.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"neural_networks.py <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"dnn2gp.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"vogn.py <span style='color:#111;'> 18.73KB </span>","children":null,"spread":false},{"title":"laplace_models.py <span style='color:#111;'> 20.07KB </span>","children":null,"spread":false},{"title":"gaussian.py <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"dual_models.py <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"regression_uncertainty.py <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明