[{"title":"( 43 个子文件 14.58MB ) dnn2gp:近似推理将深度网络转变为高斯过程(dnn2gp)","children":[{"title":"dnn2gp-master","children":[{"title":"models","children":[{"title":"2_class_mnist_zone_lenet_vogn.tk <span style='color:#111;'> 343.27KB </span>","children":null,"spread":false},{"title":"cifar_lenet_vogn.tk <span style='color:#111;'> 243.81KB </span>","children":null,"spread":false},{"title":"full_mnist_lenet_adaml2.tk <span style='color:#111;'> 175.29KB </span>","children":null,"spread":false},{"title":"cifar_lenet_adam.tk <span style='color:#111;'> 243.81KB </span>","children":null,"spread":false},{"title":"full_mnist_lenet_vogn.tk <span style='color:#111;'> 348.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"marglik.py <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"kernel_and_predictive.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"figures","children":[{"title":"marglik_sigma_wine_laplace.pdf <span style='color:#111;'> 154.28KB </span>","children":null,"spread":false},{"title":"marglik_width_toy_laplace.pdf <span style='color:#111;'> 124.54KB </span>","children":null,"spread":false},{"title":"dnn2gp_schema.png <span style='color:#111;'> 779.89KB </span>","children":null,"spread":false},{"title":"marglik_delta_toy_fits.pdf <span style='color:#111;'> 134.15KB </span>","children":null,"spread":false},{"title":"marglik_delta_wine_laplace.pdf <span style='color:#111;'> 124.64KB </span>","children":null,"spread":false},{"title":"regression_uncertainty_vi.pdf <span style='color:#111;'> 184.01KB </span>","children":null,"spread":false},{"title":"regression_uncertainty_laplace.pdf <span style='color:#111;'> 185.18KB </span>","children":null,"spread":false},{"title":"marglik_width_wine_laplace.pdf <span style='color:#111;'> 124.29KB </span>","children":null,"spread":false},{"title":"marglik_delta_toy_VI.pdf <span style='color:#111;'> 153.90KB </span>","children":null,"spread":false},{"title":"marglik_delta_toy_laplace.pdf <span style='color:#111;'> 153.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"neurips2019_poster.pdf <span style='color:#111;'> 5.84MB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"snelson","children":[{"title":"test_inputs <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"train_outputs <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"train_inputs <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"marglik_uci.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"marglik_plots.py <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"reg_ms_sigma_wine.pkl <span style='color:#111;'> 2.99MB </span>","children":null,"spread":false},{"title":"reg_ms_width_wine.pkl <span style='color:#111;'> 2.98MB </span>","children":null,"spread":false},{"title":"reg_ms_width_original.pkl <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"reg_ms_delta_wine.pkl <span style='color:#111;'> 2.99MB </span>","children":null,"spread":false},{"title":"reg_ms_delta_original.pkl <span style='color:#111;'> 2.60MB </span>","children":null,"spread":false}],"spread":true},{"title":"kernel_and_predictive_plots.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"dnn2gp","children":[{"title":"variational_models.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"utilities.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"neural_networks.py <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"dnn2gp.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"vogn.py <span style='color:#111;'> 18.73KB </span>","children":null,"spread":false},{"title":"laplace_models.py <span style='color:#111;'> 20.07KB </span>","children":null,"spread":false},{"title":"gaussian.py <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"dual_models.py <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"regression_uncertainty.py <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]