锻炼:锻炼nndl

上传者: 42157556 | 上传时间: 2022-05-26 14:39:05 | 文件大小: 14.82MB | 文件类型: ZIP
《神经网络与深度学习》课程练习 书籍信息: 欢迎大家补充练习译文。 环境设定 本次作业需要首先安装anaconda3下载地址 2.0 pytorch> 0.4 锻炼 1.热身练习热身 numpy是Python中对于矩阵处理很实用的工具包,本小节作业主要是熟悉基本的numpy操作。 2.线性回归模型 3.线性模型 支持向量机 Softmax回归Softmax回归 4.前馈神经网络 利用numpy实现全连接神经网络 5.卷积神经网络卷积神经网络(CNN) 利用卷积神经网络,处理MNIST数据集分类问题。 6.循环神经网络 基于循环神经网络的唐诗生成问题 7.注意力机制 使用序列对模型进行建模。 使用注意序列对模型进行排序。 11.高斯混合模型高斯混合模型 12.限制性玻尔兹曼机 使用适当的玻尔兹曼机(Restricted Boltzmann Machine,RBM),对MNIST数据集建模。

文件下载

资源详情

[{"title":"( 60 个子文件 14.82MB ) 锻炼:锻炼nndl","children":[{"title":"exercise-master","children":[{"title":".gitignore <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"chap3_SVM","children":[{"title":"data","children":[{"title":"test_multi.txt <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"train_kernel.txt <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"train_linear.txt <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"train_multi.txt <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"test_linear.txt <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"test_kernel.txt <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"svm.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap2_linear_regression","children":[{"title":"linear_regression-tf2.0.ipynb <span style='color:#111;'> 24.84KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"exercise-linear_regression.ipynb <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap5_CNN","children":[{"title":"corgi.jpg <span style='color:#111;'> 94.77KB </span>","children":null,"spread":false},{"title":"tutorial_cifar10_conv-keras.ipynb <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"tutorial_mnist_conv-basic.ipynb <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"tutorial_random_filter.ipynb <span style='color:#111;'> 305.47KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 915B </span>","children":null,"spread":false},{"title":"tutorial_mnist_conv-keras-sequential.ipynb <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"tutorial_mnist_conv-keras.ipynb <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"CNN_pytorch.ipynb <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false},{"title":"CNN_tensorflow.ipynb <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap6_RNN","children":[{"title":"题目要求 <span style='color:#111;'> 857B </span>","children":null,"spread":false},{"title":"tangshi.txt <span style='color:#111;'> 46.99KB </span>","children":null,"spread":false},{"title":"Learn2Carry-exercise.ipynb <span style='color:#111;'> 11.92KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 716B </span>","children":null,"spread":false},{"title":"poems.txt <span style='color:#111;'> 9.71MB </span>","children":null,"spread":false},{"title":"tangshi_for_pytorch","children":[{"title":"tangshi.txt <span style='color:#111;'> 46.99KB </span>","children":null,"spread":false},{"title":"rnn.py <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"poems.txt <span style='color:#111;'> 9.71MB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 8.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"poem_generation_with_RNN-exercise.ipynb <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap11_gaussian_mixture","children":[{"title":"README.md <span style='color:#111;'> 343B </span>","children":null,"spread":false}],"spread":true},{"title":"chap1_warmup","children":[{"title":"numpy_ tutorial.ipynb <span style='color:#111;'> 9.60KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 140B </span>","children":null,"spread":false}],"spread":true},{"title":"chap3_softmax_regression","children":[{"title":"softmax_regression-exercise.ipynb <span style='color:#111;'> 51.76KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 424B </span>","children":null,"spread":false},{"title":"logistic_regression-exercise.ipynb <span style='color:#111;'> 125.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap14_reinforcement_learning","children":[{"title":"reversi","children":[{"title":"reversi.py <span style='color:#111;'> 12.91KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-35.pyc <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"reversi.cpython-35.pyc <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"RL_QG_agent.py <span style='color:#111;'> 954B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 13.14KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"reversi_main.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"期末作业说明.pdf <span style='color:#111;'> 300.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"chap7-seq2seq-and-attention","children":[{"title":"sequence_reversal_with_attention-exercise.ipynb <span style='color:#111;'> 11.21KB </span>","children":null,"spread":false},{"title":"seq2seq-attn.jpg <span style='color:#111;'> 46.47KB </span>","children":null,"spread":false},{"title":"seq2seq.png <span style='color:#111;'> 14.55KB </span>","children":null,"spread":false},{"title":"sequence_reversal-exercise.ipynb <span style='color:#111;'> 10.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap4_ simple neural network","children":[{"title":"tf2.0-tutorial.pdf <span style='color:#111;'> 2.59MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"tutorial_minst_fnn-tf2.0-exercise.ipynb <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"tf2.0-exercise.ipynb <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"tutorial_minst_fnn-numpy-exercise.ipynb <span style='color:#111;'> 16.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"chap12_RBM","children":[{"title":"rbm.py <span style='color:#111;'> 884B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明