IDS-KDDcup:检测网络流的异常连接(KDD-cup 99)

上传者: 42153793 | 上传时间: 2022-05-09 23:22:31 | 文件大小: 3.82MB | 文件类型: ZIP
IDS-KDDcup 检测网络流的异常连接(KDD-cup 99) 了解数据 尝试找出什么是数据集的不同类 在将字符串值映射到数字并将所有类别划分为正常和异常之后 准备数据 功能重连 PCA 入侵检测系统 朴素的贝叶斯 随机森林 逻辑回归 决策树 SVC 比较算法

文件下载

资源详情

[{"title":"( 42 个子文件 3.82MB ) IDS-KDDcup:检测网络流的异常连接(KDD-cup 99)","children":[{"title":"IDS-KDDcup-master","children":[{"title":".gitignore <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"UnderstandingData","children":[{"title":"labels_variety(for Testing Dataset).png <span style='color:#111;'> 33.51KB </span>","children":null,"spread":false},{"title":"After Mapping Datasets","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Label_distribution_Test.png <span style='color:#111;'> 17.44KB </span>","children":null,"spread":false},{"title":" Label distribution.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"Label_distribution_Train.png <span style='color:#111;'> 17.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"labels_variety(for Training Dataset).png <span style='color:#111;'> 41.07KB </span>","children":null,"spread":false},{"title":"look at Datasets.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"1D-CNN.py <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"PrepareData","children":[{"title":"1.Mapping","children":[{"title":"Mapping.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Produced Data","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"3.PCA","children":[{"title":"PCA(n_components=35).png <span style='color:#111;'> 27.79KB </span>","children":null,"spread":false},{"title":"PCA(n_components=10).png <span style='color:#111;'> 27.85KB </span>","children":null,"spread":false},{"title":"PCA(n_components Compelete).png <span style='color:#111;'> 27.90KB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"PCA(n_components=25).png <span style='color:#111;'> 28.56KB </span>","children":null,"spread":false},{"title":"PCA.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.FeatureReduction","children":[{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"FeatureReduction.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"Correlation_Map.png <span style='color:#111;'> 229.62KB </span>","children":null,"spread":false},{"title":"deleted_Features.csv <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"deleted_Features(with corr).csv <span style='color:#111;'> 3B </span>","children":null,"spread":false},{"title":"Correlation_Map(seaborn).png <span style='color:#111;'> 291.23KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Datasets","children":[{"title":"corrected(Testing Dataset).gz <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"kddcup.data_10_percent(Training Dataset).gz <span style='color:#111;'> 2.05MB </span>","children":null,"spread":false}],"spread":true},{"title":"IDS","children":[{"title":"NaiveBayes.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"Naive_bayes_result.png <span style='color:#111;'> 19.14KB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Random_Forest_Result.png <span style='color:#111;'> 24.83KB </span>","children":null,"spread":false},{"title":"Algorithms(4).py <span style='color:#111;'> 6.05KB </span>","children":null,"spread":false},{"title":"Algorithms diffrence on f1.png <span style='color:#111;'> 16.52KB </span>","children":null,"spread":false},{"title":"Logistic_Regression_Result.png <span style='color:#111;'> 26.61KB </span>","children":null,"spread":false},{"title":"Logestic_regression.py <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"SVC_result.png <span style='color:#111;'> 21.56KB </span>","children":null,"spread":false},{"title":"SVC.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"Decision_Tree_result.png <span style='color:#111;'> 22.60KB </span>","children":null,"spread":false},{"title":"DecisionTree.py <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false},{"title":"Random_Forest.py <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"Algorithms results.png <span style='color:#111;'> 25.09KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明