multiview-human-pose-estimation-pytorch:这是Pytorch的官方实现,“用于3D人体姿势估计的Cross View Fusion,ICCV 2019”

上传者: 42151305 | 上传时间: 2022-04-21 20:19:14 | 文件大小: 84KB | 文件类型: ZIP
此仓库实现了我们的ICCV论文“用于3D人体姿势估计的Cross View融合” 快速开始 安装 克隆此仓库,我们将克隆多视图姿势的目录称为$ {POSE_ROOT} 安装依赖项。 下载pytorch imagenet预训练的模型。 请在$ {POSE_ROOT} / models下下载它们,并使它们看起来像这样: ${POSE_ROOT}/models └── pytorch └── imagenet ├── resnet152-b121ed2d.pth ├── resnet50-19c8e357.pth └── mobilenet_v2.pth.tar 可以从以下链接下载它们: : 初始化输出(训练模型输出目录)和日志(张量板日志目录)目录。 mkdir ouput mkdir log 并且您的目录树应该像这样

文件下载

资源详情

[{"title":"( 61 个子文件 84KB ) multiview-human-pose-estimation-pytorch:这是Pytorch的官方实现,“用于3D人体姿势估计的Cross View Fusion,ICCV 2019”","children":[{"title":"multiview-human-pose-estimation-pytorch-master","children":[{"title":"run","children":[{"title":"pose3d","children":[{"title":"estimate_cuda.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"estimate.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"_init_paths.py <span style='color:#111;'> 331B </span>","children":null,"spread":false}],"spread":true},{"title":"pose2d","children":[{"title":"train.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"valid.py <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"_init_paths.py <span style='color:#111;'> 427B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"lib","children":[{"title":"utils","children":[{"title":"pose_utils.py <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"vis.py <span style='color:#111;'> 8.48KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"zipreader.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"pose_resnet.py <span style='color:#111;'> 9.32KB </span>","children":null,"spread":false},{"title":"multiview_pose_resnet.py <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"multiview_pose_hrnet.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"pose_mobilenetv2.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 635B </span>","children":null,"spread":false},{"title":"multiview_pose_mobilenetv2.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"pose_hrnet.py <span style='color:#111;'> 17.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"core","children":[{"title":"inference.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"function.py <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"joints_dataset.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"multiview_mpii.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"mpii.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 397B </span>","children":null,"spread":false},{"title":"multiview_h36m.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"h36m.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"mixed_dataset.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"_init_paths.py <span style='color:#111;'> 331B </span>","children":null,"spread":false}],"spread":true},{"title":"multiviews","children":[{"title":"body.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"cameras_cuda.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"cameras.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"triangulate.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"pictorial.py <span style='color:#111;'> 9.03KB </span>","children":null,"spread":false},{"title":"pictorial_cuda.py <span style='color:#111;'> 8.18KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"SECURITY.md <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"experiments-local","children":[{"title":"mixed","children":[{"title":"mobilenetv2","children":[{"title":"256_fusion.yaml <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"320_nofusion.yaml <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"256_nofusion.yaml <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"320_fusion.yaml <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"hrnet","children":[{"title":"256_fusion_nocrop.yaml <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"256_fusion.yaml <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"resnet152","children":[{"title":"256_fusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"320_nofusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"256_nofusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"320_fusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"resnet50","children":[{"title":"256_fusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"320_nofusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"256_nofusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"320_fusion.yaml <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"mpii","children":[{"title":"mobilenetv2","children":[{"title":"320_nofusion.yaml <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"256_nofusion.yaml <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"INSTALL.md <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明