CodeSLAM:CodeSLAM的实现—学习密集的Visual SLAM论文的紧凑,可优化表示形式(https-源码

上传者: 42149153 | 上传时间: 2022-02-15 16:38:12 | 文件大小: 11KB | 文件类型: -
CodeSLAM CodeSLAM的PyTorch实现。 概括 它试图解决/解决的问题 真实3D感知系统中的几何图形表示。 可能带有语义标签的密集表示是高维的,不适合概率推断。 稀疏表示,可以避免这些问题,但仅捕获部分场景信息。 新方法/解决方案 新的紧凑但密集的场景几何表示,以来自单个图像的强度数据为条件,并由包含少量参数的代码生成。 每个关键帧都可以生成一个深度图,但是可以与姿势变量和重叠关键帧的代码一起对代码进行优化,以实现全局一致性。 介绍 由于不确定性的传播对于很大的自由度很快变得难以处理,因此SLAM的方法分为两类: 稀疏SLAM,通过稀疏特征集表示几何 密集SLAM,它尝试检索环境的更完整描述。 自然场景的几何表现出高度的有序性,因此我们可能不需要大量的参数来表示它。 除此之外,还可以将场景分解为一组语义对象(例如椅子)以及一些内部参数(例如椅子的大小,没有腿)

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明