lidar-bonnetal:LiDAR点云的语义和实例分割,用于自动驾驶

上传者: 42149145 | 上传时间: 2022-12-18 16:25:44 | 文件大小: 17.46MB | 文件类型: ZIP
激光雷达 使用距离图像对点云进行语义分割。 由 , , 和 来自数据集的分割结果示例: 描述 该代码提供了使用距离图像作为中间表示来训练和部署LiDAR扫描语义分割的代码。 培训管道可以在找到。 我们将尽快开源部署管道。 预训练模型 squeezesegV2 + crf darknet21 暗网53 暗网53-1024 暗网53-512 要启用kNN后处理,只需在模型目录内的arch_cfg.yaml文件参数中将布尔值更改为True 。 模型预测 语义技术 这些是训练,验证和测试集的预测。 可以针对训练和验证集评估性能,但对于测试集评估,则需要提交基准测试(标签不公开)。 没有后处理: 塞格塞格 squeezeseg + crf squeezesegV2 squeezesegV2 + crf darknet21 暗网53 暗网53-1024 暗网53-5

文件下载

资源详情

[{"title":"( 65 个子文件 17.46MB ) lidar-bonnetal:LiDAR点云的语义和实例分割,用于自动驾驶","children":[{"title":"lidar-bonnetal-master","children":[{"title":"train","children":[{"title":"common","children":[{"title":"avgmeter.py <span style='color:#111;'> 421B </span>","children":null,"spread":false},{"title":"laserscanvis.py <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"sync_batchnorm","children":[{"title":"comm.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"replicate.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 13.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"laserscan.py <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"onehot.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"warmupLR.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"auxiliary","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"tasks","children":[{"title":"semantic","children":[{"title":"train.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"postproc","children":[{"title":"KNN.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"CRF.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 90B </span>","children":null,"spread":false},{"title":"borderMask.py <span style='color:#111;'> 12.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"decoders","children":[{"title":"squeezesegV2.py <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"squeezeseg.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"darknet.py <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"modules","children":[{"title":"user.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"segmentator.py <span style='color:#111;'> 6.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 17.59KB </span>","children":null,"spread":false},{"title":"ioueval.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"evaluate_biou.py <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"evaluate_iou.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"infer.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 96B </span>","children":null,"spread":false},{"title":"visualize.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"kitti","children":[{"title":"parser.py <span style='color:#111;'> 13.65KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"config","children":[{"title":"labels","children":[{"title":"semantic-kitti-all.yaml <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"semantic-kitti.yaml <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false}],"spread":false},{"title":"arch","children":[{"title":"squeezesegV2.yaml <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"darknet53-1024px.yaml <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"squeezeseg.yaml <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"darknet53-crf-1024px.yaml <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"darknet21.yaml <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"darknet53.yaml <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"darknet53-crf-512px.yaml <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"squeezesegV2_crf.yaml <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"darknet53-512px.yaml <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"squeezeseg_crf.yaml <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"darknet53-crf.yaml <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"panoptic","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 911B </span>","children":null,"spread":false},{"title":"backbones","children":[{"title":"squeezesegV2.py <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"squeezeseg.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"darknet.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"pics","children":[{"title":"semantic-ptcl.gif <span style='color:#111;'> 14.81MB </span>","children":null,"spread":false},{"title":"semantic-proj.gif <span style='color:#111;'> 2.71MB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 231B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 81B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明