上传者: 42148053
|
上传时间: 2021-10-05 15:50:13
|
文件大小: 18.68MB
|
文件类型: -
单反
这是在《自然方法》上发表的论文的python实现,该论文的标题为“通过基于内核的相似性学习对单细胞RNA-seq数据进行可视化和分析”。
概述
单细胞RNA-seq技术可实现单个细胞的高通量基因表达测量,并允许发现细胞群体内的异质性。 细胞间基因表达相似性的测量对于细胞群的鉴定,可视化和分析至关重要。 然而,由于高水平的噪声,离群值和遗漏,单细胞数据对基因表达相似性的常规测量提出了挑战。 我们开发了一种新颖的相似性学习框架SIMLR(通过多内核学习进行单细胞解释),该学习方法从数据中学习了合适的距离度量以进行降维,聚类和可视化。 与现有的降维方法相比,SIMLR能够在单细胞数据集中更准确地分离已知子种群。 此外,SIMLR对通过10x Genomics的GemCode单细胞技术生成的高通量外周血单个核细胞(PBMC)数据集表现出高灵敏度和准确性。
实施方式
我们为大型单细胞RNA