cityscapes_cv:对城市街道场景的语义理解

上传者: 42144086 | 上传时间: 2022-12-14 21:01:30 | 文件大小: 1.34MB | 文件类型: ZIP
街道场景的语义分割 1)下载资料 脚步 转到 (需要创建帐户) 下载gtFine_trainvaltest.zip和leftImg8bit_trainvaltest.zip 解压缩并将它们放到同一文件夹中 删除gtfine和leftImg8bit内的test目录,这些注释是虚拟注释。 使用data_folder_format.ipynb从每个城市文件夹中提取原始图像和注释,并将它们组合为一个用于图像的大文件夹和一个用于注释的大文件夹。 2)建立用于图像分割的TFRecords数据集 由于我们正在使用的数据集可能太大而无法容纳到内存中,因此我们需要一种在训练过程中连续从磁盘流式传输数据的方法。 这是使用TensoFlow的tf.data.dataset API完成的,该API需要我们将数据集序列化为.tfrecords文件。 使用dataset_build.ipynb来执行此过程,该

文件下载

资源详情

[{"title":"( 31 个子文件 1.34MB ) cityscapes_cv:对城市街道场景的语义理解","children":[{"title":"cityscapes_cv-main","children":[{"title":".gitignore <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"label_utils.py <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"plot_utils.cpython-36.pyc <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"label_utils.cpython-36.pyc <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"cityscapes_utils.cpython-36.pyc <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"plot_utils.py <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"cityscapes_utils.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"raw_data","children":[{"title":"coarse_train_info.json <span style='color:#111;'> 3.74MB </span>","children":null,"spread":false},{"title":"fine_train_info.json <span style='color:#111;'> 640.99KB </span>","children":null,"spread":false},{"title":"fine_test_info.json <span style='color:#111;'> 160.39KB </span>","children":null,"spread":false},{"title":"coarse_test_info.json <span style='color:#111;'> 955.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"u2net.py <span style='color:#111;'> 15.12KB </span>","children":null,"spread":false},{"title":"deeplabv3_mobilenetv2.py <span style='color:#111;'> 7.52KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 6.92KB </span>","children":null,"spread":false},{"title":"segnet.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"deeplabv3_xception.cpython-36.pyc <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false},{"title":"unet.cpython-36.pyc <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"u2net.cpython-36.pyc <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"deeplabv3_xception.py <span style='color:#111;'> 10.57KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"plots","children":[{"title":"unet_learning_curves.png <span style='color:#111;'> 63.63KB </span>","children":null,"spread":false},{"title":"u2net_learning_curves.png <span style='color:#111;'> 77.53KB </span>","children":null,"spread":false},{"title":"u2net_iou_scores.png <span style='color:#111;'> 105.04KB </span>","children":null,"spread":false},{"title":"deeplabv3_xception_iou_scores_coarse.png <span style='color:#111;'> 112.88KB </span>","children":null,"spread":false},{"title":"unet_iou_scores.png <span style='color:#111;'> 91.38KB </span>","children":null,"spread":false},{"title":"deeplabv3_xception_learning_curves.png <span style='color:#111;'> 74.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"segmentation_data_folder_format.ipynb <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"segmentation_model_eval.ipynb <span style='color:#111;'> 21.85KB </span>","children":null,"spread":false},{"title":"u2net_best.png <span style='color:#111;'> 285.32KB </span>","children":null,"spread":false},{"title":"segmentation_dataset_build.ipynb <span style='color:#111;'> 691.96KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明