comp300:最后一年项目的逆向强化学习

上传者: 42143806 | 上传时间: 2024-10-17 18:45:54 | 文件大小: 78.07MB | 文件类型: ZIP
COMP300:演示中的反加固学习 该存储库包含用于为我的反强化学习的最后一年项目进行实验的代码。 此外,它还包含一个GUI,可让用户在此处进行自己的实验,而无需了解技术细节。 最后,其中包含了一些结果,以显示有关如何运行和分析实验的示例。 设置 要设置此软件包,您首先需要克隆存储库并设置虚拟环境,以避免与其他项目发生冲突。 git clone https://gitlab.cs.man.ac.uk/f46471pq/comp300.git cd comp300 下一步设置并使用venv激活虚拟环境。 virtualenv --python=python3 venv . ./venv/bin/activate 现在,我们需要安装所需的软件包并安装此软件包。 pip install -r requirements.txt pip install -e baselines-maste

文件下载

资源详情

[{"title":"( 288 个子文件 78.07MB ) comp300:最后一年项目的逆向强化学习","children":[{"title":"Ant_agent2M.avi <span style='color:#111;'> 74.98MB </span>","children":null,"spread":false},{"title":"Ant_demonstrator.avi <span style='color:#111;'> 6.49MB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 93B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 465B </span>","children":null,"spread":false},{"title":"cartpole.gif <span style='color:#111;'> 327.08KB </span>","children":null,"spread":false},{"title":"benchmarks_atari10M.htm <span style='color:#111;'> 425.74KB </span>","children":null,"spread":false},{"title":"benchmarks_mujoco1M.htm <span style='color:#111;'> 153.01KB </span>","children":null,"spread":false},{"title":"baselines_viz.ipynb <span style='color:#111;'> 631.40KB </span>","children":null,"spread":false},{"title":"viz.ipynb <span style='color:#111;'> 566.70KB </span>","children":null,"spread":false},{"title":"HalfCheetahRewardLog.ipynb <span style='color:#111;'> 137.61KB </span>","children":null,"spread":false},{"title":"ImprovedBreakoutRewardLog.ipynb <span style='color:#111;'> 133.62KB </span>","children":null,"spread":false},{"title":"FirstBreakoutRewardLog.ipynb <span style='color:#111;'> 126.78KB </span>","children":null,"spread":false},{"title":"SecondBreakoutRewardLog-checkpoint.ipynb <span style='color:#111;'> 125.18KB </span>","children":null,"spread":false},{"title":"HalfCheetahRewardLog-checkpoint.ipynb <span style='color:#111;'> 125.18KB </span>","children":null,"spread":false},{"title":"ThirdBreakoutRewardLog-checkpoint.ipynb <span style='color:#111;'> 125.18KB </span>","children":null,"spread":false},{"title":"FirstBreakoutRewardLog-checkpoint.ipynb <span style='color:#111;'> 125.18KB </span>","children":null,"spread":false},{"title":"MsPacmanRewardLog.ipynb <span style='color:#111;'> 109.85KB </span>","children":null,"spread":false},{"title":"SecondBreakoutRewardLog.ipynb <span style='color:#111;'> 101.64KB </span>","children":null,"spread":false},{"title":"AntRewardLog.ipynb <span style='color:#111;'> 99.29KB </span>","children":null,"spread":false},{"title":"BreakoutRewardVisualisation.ipynb <span style='color:#111;'> 79.32KB </span>","children":null,"spread":false},{"title":"BreakoutDemonstratorVis.ipynb <span style='color:#111;'> 72.39KB </span>","children":null,"spread":false},{"title":"ThirdBreakoutRewardLog.ipynb <span style='color:#111;'> 71.95KB </span>","children":null,"spread":false},{"title":"Untitled1.ipynb <span style='color:#111;'> 60.44KB </span>","children":null,"spread":false},{"title":"baselines_viz-checkpoint.ipynb <span style='color:#111;'> 53.46KB </span>","children":null,"spread":false},{"title":"Chess_winrate.ipynb <span style='color:#111;'> 52.57KB </span>","children":null,"spread":false},{"title":"ImprovedBreakoutRewardLog-checkpoint.ipynb <span style='color:#111;'> 48.18KB </span>","children":null,"spread":false},{"title":"Untitled.ipynb <span style='color:#111;'> 43.44KB </span>","children":null,"spread":false},{"title":"ChessRewardLog.ipynb <span style='color:#111;'> 28.89KB </span>","children":null,"spread":false},{"title":"breakout classification.ipynb <span style='color:#111;'> 23.32KB </span>","children":null,"spread":false},{"title":"BreakoutDemonstratorVis-checkpoint.ipynb <span style='color:#111;'> 815B </span>","children":null,"spread":false},{"title":"logo.jpg <span style='color:#111;'> 118.78KB </span>","children":null,"spread":false},{"title":"demonstratorFullTrain.json <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"demonstrator100ktrain.json <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"vecenv.video.51220.video000000.meta.json <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.42KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"gail-result.md <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 893B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 833B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 629B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 532B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 330B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"Agent50MTrain.mp4 <span style='color:#111;'> 235.70KB </span>","children":null,"spread":false},{"title":"demonstratorFullTrain.mp4 <span style='color:#111;'> 151.40KB </span>","children":null,"spread":false},{"title":"Agent50MTrain2.mp4 <span style='color:#111;'> 74.37KB </span>","children":null,"spread":false},{"title":"Agent12MTrain.mp4 <span style='color:#111;'> 33.88KB </span>","children":null,"spread":false},{"title":"demonstrator100kTrain.mp4 <span style='color:#111;'> 25.66KB </span>","children":null,"spread":false},{"title":"Agent0MTrain.mp4 <span style='color:#111;'> 10.33KB </span>","children":null,"spread":false},{"title":"humanoidstandup-training.png <span style='color:#111;'> 683.97KB </span>","children":null,"spread":false},{"title":"walker2d-training.png <span style='color:#111;'> 628.85KB </span>","children":null,"spread":false},{"title":"humanoid-training.png <span style='color:#111;'> 538.16KB </span>","children":null,"spread":false},{"title":"hopper-training.png <span style='color:#111;'> 534.18KB </span>","children":null,"spread":false},{"title":"halfcheetah-training.png <span style='color:#111;'> 503.59KB </span>","children":null,"spread":false},{"title":"fetchPickAndPlaceContrast.png <span style='color:#111;'> 68.31KB </span>","children":null,"spread":false},{"title":"Breakout_leaningOverTime.png <span style='color:#111;'> 65.88KB </span>","children":null,"spread":false},{"title":"HalfCheetah-unnormalized-stochastic-scores.png <span style='color:#111;'> 51.91KB </span>","children":null,"spread":false},{"title":"HumanoidStandup-unnormalized-stochastic-scores.png <span style='color:#111;'> 49.41KB </span>","children":null,"spread":false},{"title":"Hopper-unnormalized-stochastic-scores.png <span style='color:#111;'> 47.96KB </span>","children":null,"spread":false},{"title":"index.png <span style='color:#111;'> 47.71KB </span>","children":null,"spread":false},{"title":"Ant_learningOverTime.png <span style='color:#111;'> 46.98KB </span>","children":null,"spread":false},{"title":"Walker2d-unnormalized-stochastic-scores.png <span style='color:#111;'> 46.54KB </span>","children":null,"spread":false},{"title":"Humanoid-unnormalized-stochastic-scores.png <span style='color:#111;'> 45.76KB </span>","children":null,"spread":false},{"title":"HumanoidStandup-unnormalized-deterministic-scores.png <span style='color:#111;'> 45.41KB </span>","children":null,"spread":false},{"title":"Humanoid-unnormalized-deterministic-scores.png <span style='color:#111;'> 43.40KB </span>","children":null,"spread":false},{"title":"HalfCheetah-unnormalized-deterministic-scores.png <span style='color:#111;'> 42.68KB </span>","children":null,"spread":false},{"title":"Hopper-normalized-stochastic-scores.png <span style='color:#111;'> 42.16KB </span>","children":null,"spread":false},{"title":"HalfCheetah-normalized-stochastic-scores.png <span style='color:#111;'> 41.21KB </span>","children":null,"spread":false},{"title":"Walker2d-normalized-stochastic-scores.png <span style='color:#111;'> 40.91KB </span>","children":null,"spread":false},{"title":"HumanoidStandup-normalized-stochastic-scores.png <span style='color:#111;'> 40.05KB </span>","children":null,"spread":false},{"title":"Humanoid-normalized-stochastic-scores.png <span style='color:#111;'> 39.69KB </span>","children":null,"spread":false},{"title":"Walker2d-unnormalized-deterministic-scores.png <span style='color:#111;'> 38.04KB </span>","children":null,"spread":false},{"title":"BreakoutDemonstratorTraining.png <span style='color:#111;'> 37.90KB </span>","children":null,"spread":false},{"title":"BreakoutRewardVis.png <span style='color:#111;'> 36.13KB </span>","children":null,"spread":false},{"title":"Humanoid-normalized-deterministic-scores.png <span style='color:#111;'> 35.38KB </span>","children":null,"spread":false},{"title":"Breakout_learnedReward2.png <span style='color:#111;'> 34.16KB </span>","children":null,"spread":false},{"title":"mspacman_learnedReward2.png <span style='color:#111;'> 33.87KB </span>","children":null,"spread":false},{"title":"ImprovedIRL_learnedReward.png <span style='color:#111;'> 33.38KB </span>","children":null,"spread":false},{"title":"Halfcheetah_learningOverTime.png <span style='color:#111;'> 33.34KB </span>","children":null,"spread":false},{"title":"Breakout_learnedReward1.png <span style='color:#111;'> 33.26KB </span>","children":null,"spread":false},{"title":"Hopper-unnormalized-deterministic-scores.png <span style='color:#111;'> 33.25KB </span>","children":null,"spread":false},{"title":"halfcheetahreward.png <span style='color:#111;'> 33.21KB </span>","children":null,"spread":false},{"title":"Ant_learnedReward.png <span style='color:#111;'> 32.93KB </span>","children":null,"spread":false},{"title":"Breakout_learnedReward3.png <span style='color:#111;'> 32.85KB </span>","children":null,"spread":false},{"title":"HalfCheetah-normalized-deterministic-scores.png <span style='color:#111;'> 32.74KB </span>","children":null,"spread":false},{"title":"BreakoutAgentTraining.png <span style='color:#111;'> 31.95KB </span>","children":null,"spread":false},{"title":"HumanoidStandup-normalized-deterministic-scores.png <span style='color:#111;'> 31.83KB </span>","children":null,"spread":false},{"title":"Halfcheetah_learningOverTime2.png <span style='color:#111;'> 31.58KB </span>","children":null,"spread":false},{"title":"Walker2d-normalized-deterministic-scores.png <span style='color:#111;'> 31.11KB </span>","children":null,"spread":false},{"title":"ImprovedIRL_learningOverTime.png <span style='color:#111;'> 29.88KB </span>","children":null,"spread":false},{"title":"mspacman_learnedReward.png <span style='color:#111;'> 29.75KB </span>","children":null,"spread":false},{"title":"Hopper-normalized-deterministic-scores.png <span style='color:#111;'> 29.71KB </span>","children":null,"spread":false},{"title":"index6.png <span style='color:#111;'> 21.96KB </span>","children":null,"spread":false},{"title":"BreakoutDemoVSAgent.png <span style='color:#111;'> 21.88KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明