BiLSTM-and-CNN-for-Link-Prediction:基于路径的链接预测模型的 Keras 实现-源码

上传者: 42143092 | 上传时间: 2022-03-07 15:20:47 | 文件大小: 14KB | 文件类型: -
BiLSTM CNN 在 Keras 中完成知识图谱 Keras 实现了题为“使用 CNN-BiLSTM 和注意力机制实现知识图完成的基于路径的推理方法”的论文。 给定一个候选关系和两个实体,它使用卷积运算和 BiLSTM 编码将实体连接到低维空间的路径。 还应用了一个注意力层来捕获候选关系与两个实体之间的每条路径之间的语义相关性,并从多条路径的表示中专注地提取推理证据以预测实体是否应该通过候选关系连接。 所需文件 data/processed_data.tar.gz - 包含具有关系和实体的接地路径的数据集文件(例如 e1、r1、e2、r2、e3)。 任务 - 可以从 [1] 下载。 为了生成诸如 (r1, r2, ..., rk) 之类的关系路径,我们使用了 [2]。 我们用于实验的原始知识图数据可以在 [1] 中找到,其中包括带有训练/测试三元组的任务数据集。 如果您使用我们的

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明