prob_mbrl:pytorch中基于概率模型的RL算法库-源码

上传者: 42143092 | 上传时间: 2021-08-27 16:03:06 | 文件大小: 905KB | 文件类型: ZIP
prob_mbrl 基于概率模型的RL的Deep-PILCO及其变体的实现。 这是算法的(正在进行中)重新实现。 我们还旨在将其他基于概率模型的RL方法添加到该库中。 推荐的安装方式: 安装Miniconda 3发行版: ://conda.io/miniconda.html conda install pytorch cuda90 cudnn -c pytorch conda install tqdm 要运行mc-pilco cartpole示例,您还需要安装kusanagi库( )。 我们计划在将来消除这种依赖性。 例如,有关如何使用此库的信息,请查看notbooks文件夹。 目前,我们有一个使用BNN模型进行回归的示例,还有一个MC PILCO的示例

文件下载

资源详情

[{"title":"( 57 个子文件 905KB ) prob_mbrl:pytorch中基于概率模型的RL算法库-源码","children":[{"title":"prob_mbrl-master","children":[{"title":"notebooks","children":[{"title":"mc_pilco.ipynb <span style='color:#111;'> 38.88KB </span>","children":null,"spread":false},{"title":"BNN_regression_example.ipynb <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"run_trained_policy.ipynb <span style='color:#111;'> 42.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":"transformer_models.py <span style='color:#111;'> 22.75KB </span>","children":null,"spread":false},{"title":"deep_pilco_mm.py <span style='color:#111;'> 10.89KB </span>","children":null,"spread":false},{"title":"bnn_regression_2d.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"evaluate_policy.py <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"mbddpg.py <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"bnn_regression.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"deep_pilco_no_mm.py <span style='color:#111;'> 10.89KB </span>","children":null,"spread":false},{"title":"deep_pilco_no_mm_with_value.py <span style='color:#111;'> 16.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 562B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 808B </span>","children":null,"spread":false},{"title":"prob_mbrl","children":[{"title":"utils","children":[{"title":"rollout.py <span style='color:#111;'> 10.55KB </span>","children":null,"spread":false},{"title":"experiments.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"classproperty.py <span style='color:#111;'> 935B </span>","children":null,"spread":false},{"title":"train_regressor.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"apply_controller.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"angles.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'> 9.03KB </span>","children":null,"spread":false},{"title":"experience_dataset.py <span style='color:#111;'> 13.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"algorithms","children":[{"title":"mc_pilco.py <span style='color:#111;'> 16.88KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 115B </span>","children":null,"spread":false},{"title":"MBDDPG.py <span style='color:#111;'> 9.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"envs","children":[{"title":"cartpole","children":[{"title":"env.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 134B </span>","children":null,"spread":false}],"spread":true},{"title":"base.py <span style='color:#111;'> 7.54KB </span>","children":null,"spread":false},{"title":"pendulum","children":[{"title":"env.py <span style='color:#111;'> 5.47KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 134B </span>","children":null,"spread":false}],"spread":true},{"title":"cart_acrobot","children":[{"title":"env.py <span style='color:#111;'> 8.63KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 152B </span>","children":null,"spread":false}],"spread":true},{"title":"rendezvous","children":[{"title":"env.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 146B </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 582B </span>","children":null,"spread":false},{"title":"lunar_lander.py <span style='color:#111;'> 18.10KB </span>","children":null,"spread":false},{"title":"assets","children":[{"title":"cartpole.xml <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"double_cartpole","children":[{"title":"env.py <span style='color:#111;'> 8.66KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 170B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"models","children":[{"title":"__init__.py <span style='color:#111;'> 130B </span>","children":null,"spread":false},{"title":"modules.py <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 879B </span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'> 10.45KB </span>","children":null,"spread":false},{"title":"densities.py <span style='color:#111;'> 10.19KB </span>","children":null,"spread":false},{"title":"conditional_density.py <span style='color:#111;'> 13.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"thirdparty","children":[{"title":"sdlbfgs.py <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false},{"title":"radam.py <span style='color:#111;'> 8.62KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 74B </span>","children":null,"spread":false}],"spread":true},{"title":"losses.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 93B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明