graph-neural-networks-for-drug-discovery

上传者: 42142062 | 上传时间: 2022-05-02 18:36:03 | 文件大小: 38KB | 文件类型: ZIP
基于原始分子图的神经网络属性预测 该代码是在阿斯利康进行的两项工作的基础: 我的硕士学位论文 Me和Michael Withnall的论文《 的中,本文提到的三个模型引用了以下代码和论文的模型: SELU-MPNN-> GGNN AMPNN-> AttentionGGNN GGNN EMNN-> EMN 论文的技术细节更为丰富,但并未经过同行评审,其中包含错误生成的ESOL数据集结果。 本文包含了更详尽,更仔细地生成的结果集。 相关工作 最重要的四篇相关论文是: 提供了一个图神经网络作为本工作以及以下论文的基线 定义了图表的神经网络的MPNN框架,在该代码实现为抽象类SummationMPNN 提供了一种用于节点分类的模型,该模型具有消息聚合步骤,该步骤不适合MPNN框架,但可以适合作为抽象AggregationMPNN类实现的更通用的框架,在计算上可以看作是较轻的变体。当前

文件下载

资源详情

[{"title":"( 27 个子文件 38KB ) graph-neural-networks-for-drug-discovery","children":[{"title":"graph-neural-networks-for-drug-discovery-master","children":[{"title":".gitignore <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"toydata","children":[{"title":"piece-of-tox21-train-for-prediction.csv.gz <span style='color:#111;'> 381B </span>","children":null,"spread":false},{"title":"piece-of-tox21-train.csv.gz <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"piece-of-tox21-test.csv.gz <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"piece-of-esol.csv.gz <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"piece-of-tox21-valid.csv.gz <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENCE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"example.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false},{"title":"train_logging.py <span style='color:#111;'> 9.68KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"gnn_test_case.py <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"test_implementations.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"test_example.py <span style='color:#111;'> 407B </span>","children":null,"spread":false}],"spread":true},{"title":"predict.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"gnn","children":[{"title":"summation_mpnn.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"aggregation_mpnn.py <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"emn.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"aggregation_mpnn_implementations.py <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"emn_implementations.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"summation_mpnn_implementations.py <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"modules.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"graph_features.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"molgraph_data.py <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"losses.py <span style='color:#111;'> 580B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 9.19KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明