advanced-tensorflow:更多高级TensorFlow实现-源码

上传者: 42140716 | 上传时间: 2021-07-14 15:51:59 | 文件大小: 21.34MB | 文件类型: ZIP
先进的TensorFlow (更多+重构)高级TensorFlow实现的集合。 尽我所能用一个Jupyter Notebook实现算法。 去噪自动编码器 卷积自动编码器(使用反卷积) 可变自动编码器 二维玩具示例上的AVB 基本分类(MLP和CNN) 自定义数据集生成 使用自定义数据集进行分类(MLP和CNN) MLP和CNN的OOP样式实现 使用TF-SLIM进行预训练的网络使用 具有预训练网络的班级激活图 预处理Linux内核源 使用Char-RNN进行训练和采样 具有梯度反转层的领域对抗神经网络 MNIST的深度卷积生成对抗网络 混合物密度网络 异方差混合物密度网络 基于模型的

文件下载

资源详情

[{"title":"( 75 个子文件 21.34MB ) advanced-tensorflow:更多高级TensorFlow实现-源码","children":[{"title":"advanced-tensorflow-master","children":[{"title":"mnist","children":[{"title":"logs","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"mnist_slim.ipynb <span style='color:#111;'> 33.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"avb","children":[{"title":"avb_toy.ipynb <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false}],"spread":true},{"title":"dann","children":[{"title":"data","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"dann_mnist.ipynb <span style='color:#111;'> 553.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"word2vec","children":[{"title":"w2v.ipynb <span style='color:#111;'> 581.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"char-rnn","children":[{"title":"1_proprocess_linux.ipynb <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"linux_kernel","children":[{"title":"input.txt <span style='color:#111;'> 1.63MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"char-rnn-simple.ipynb <span style='color:#111;'> 39.34KB </span>","children":null,"spread":false},{"title":"3_char_rnn_sample_linux.ipynb <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false},{"title":"2_char_rnn_train_linux.ipynb <span style='color:#111;'> 16.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"srgan","children":[{"title":"checkpoint","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"train","children":[{"title":"batch020000_out.png <span style='color:#111;'> 91.96KB </span>","children":null,"spread":false},{"title":"batch004000_out.png <span style='color:#111;'> 93.02KB </span>","children":null,"spread":false},{"title":"batch000001_out.png <span style='color:#111;'> 92.00KB </span>","children":null,"spread":false},{"title":"batch016000_out.png <span style='color:#111;'> 91.60KB </span>","children":null,"spread":false},{"title":"batch012000_out.png <span style='color:#111;'> 91.05KB </span>","children":null,"spread":false},{"title":"batch008000_out.png <span style='color:#111;'> 90.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"srgan.ipynb <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"model.py <span style='color:#111;'> 11.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"mdn","children":[{"title":"hmdn.ipynb <span style='color:#111;'> 1.99MB </span>","children":null,"spread":false},{"title":"mdn.ipynb <span style='color:#111;'> 2.42MB </span>","children":null,"spread":false}],"spread":true},{"title":"ae","children":[{"title":"data","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"cae.ipynb <span style='color:#111;'> 964.01KB </span>","children":null,"spread":false},{"title":"vae.ipynb <span style='color:#111;'> 636.01KB </span>","children":null,"spread":false},{"title":"dae.ipynb <span style='color:#111;'> 360.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"basic","children":[{"title":"basic_gendataset.ipynb <span style='color:#111;'> 133.72KB </span>","children":null,"spread":false},{"title":"mlp_mnist.ipynb <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"basic_logisticregression.ipynb <span style='color:#111;'> 45.12KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"horse.jpeg <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"cow.jpg <span style='color:#111;'> 111.02KB </span>","children":null,"spread":false},{"title":"dog.jpg <span style='color:#111;'> 69.67KB </span>","children":null,"spread":false},{"title":"cat.jpg <span style='color:#111;'> 205.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"2.jpg <span style='color:#111;'> 46.56KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 54.50KB </span>","children":null,"spread":false},{"title":"data-02-stock_daily.csv <span style='color:#111;'> 36.17KB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 2B </span>","children":null,"spread":false}],"spread":false},{"title":"rnn_stockpred.ipynb <span style='color:#111;'> 49.67KB </span>","children":null,"spread":false},{"title":"basic_imghandling.ipynb <span style='color:#111;'> 1.39MB </span>","children":null,"spread":false},{"title":"char-rnn-simple.ipynb <span style='color:#111;'> 24.33KB </span>","children":null,"spread":false},{"title":"cnn_mnist_modern.ipynb <span style='color:#111;'> 54.56KB </span>","children":null,"spread":false},{"title":"cnn_mnist_simple.ipynb <span style='color:#111;'> 250.99KB </span>","children":null,"spread":false},{"title":"basic_vidfig.ipynb <span style='color:#111;'> 709.27KB </span>","children":null,"spread":false},{"title":"rnn_mnist.ipynb <span style='color:#111;'> 13.96KB </span>","children":null,"spread":false},{"title":"oop_style_cnn.ipynb <span style='color:#111;'> 208.57KB </span>","children":null,"spread":false},{"title":"oop_style_mlp.ipynb <span style='color:#111;'> 191.96KB </span>","children":null,"spread":false},{"title":"basic_tensorflow.ipynb <span style='color:#111;'> 15.11KB </span>","children":null,"spread":false},{"title":"basic_mnist.ipynb <span style='color:#111;'> 27.93KB </span>","children":null,"spread":false},{"title":"basic_python.ipynb <span style='color:#111;'> 90.33KB </span>","children":null,"spread":false},{"title":"cnn_custom_simple.ipynb <span style='color:#111;'> 989.39KB </span>","children":null,"spread":false},{"title":"lr_mnist.ipynb <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"mlp_custom.ipynb <span style='color:#111;'> 294.12KB </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"cam","children":[{"title":"pretrain_usage.ipynb <span style='color:#111;'> 122.48KB </span>","children":null,"spread":false},{"title":"cam.ipynb <span style='color:#111;'> 7.04MB </span>","children":null,"spread":false},{"title":"data","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"rl","children":[{"title":"mdp_pe.ipynb <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"env_cartpole.ipynb <span style='color:#111;'> 71.08KB </span>","children":null,"spread":false},{"title":"mdp_vi.ipynb <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"tabular_cartpole.ipynb <span style='color:#111;'> 3.88MB </span>","children":null,"spread":false},{"title":"env_blackjack.ipynb <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"env","children":[{"title":"gridworld.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"blackjack.pyc <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"blackjack.py <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false}],"spread":false},{"title":"dqn_cartpole.ipynb <span style='color:#111;'> 586.08KB </span>","children":null,"spread":false},{"title":"mdp_pi.ipynb <span style='color:#111;'> 8.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"dcgan","children":[{"title":"checkpoint","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"gan_mnist_slim.ipynb <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"samples","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"dcgan_mnist.ipynb <span style='color:#111;'> 1.66MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明