Multi-class-Peer-Loss-functions:通过采用对等预测损失功能来学习带有噪声的标签(深度学习和多类版本)-源码

上传者: 42139871 | 上传时间: 2021-07-05 20:43:27 | 文件大小: 128.59MB | 文件类型: ZIP
对等丢失功能 此存储库是ICML2020接受的“”的Pytorch Pytorch实现。 所需的包装和环境 支持的操作系统: Windows,Linux,Mac OS X; 的Python:3.6 / 3.7; 深度学习库: PyTorch(需要GPU) 所需软件包: Numpy,Pandas,random,sklearn,tqdm,csv,火炬(如果要估计噪声转换矩阵,则需要Keras)。 实用工具 该存储库包括: :clipboard: 对等丢失功能的多类实现; :clipboard: 深度学习中的对等丢失功能; :clipboard: Peer Loss功能的动态调整策略可进一步提高性能。 运行详细信息( 每个文件夹的README.md文件中都提到了MNIST,Fashion MNIST,CIFAR-10,CIFAR-100上具有不同噪声设置的对等丢失功能。 的工作流程 加权对等损失函数包括: 决策边界可视化 给定2D合成

文件下载

资源详情

[{"title":"( 70 个子文件 128.59MB ) Multi-class-Peer-Loss-functions:通过采用对等预测损失功能来学习带有噪声的标签(深度学习和多类版本)-源码","children":[{"title":"Multi-class-Peer-Loss-functions-main","children":[{"title":"peernet.png <span style='color:#111;'> 153.97KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"MNIST","children":[{"title":"runner.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"noise_label","children":[{"title":"MNIST_noise_r0_6.pt <span style='color:#111;'> 469.11KB </span>","children":null,"spread":false},{"title":"MNIST_noise_r0_4.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false},{"title":"MNIST_noise_r0_3.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false},{"title":"MNIST_noise_r0_5.pt <span style='color:#111;'> 469.11KB </span>","children":null,"spread":false},{"title":"MNIST_noise_r0_1.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false},{"title":"test.pt <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false},{"title":"MNIST_noise_r0_2.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"noise_data_mnist.py <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 634B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"raw","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"processed","children":[{"title":"test.pt <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false},{"title":"training.pt <span style='color:#111;'> 45.32MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"CIFAR-10","children":[{"title":"noise_data_cifar_10.py <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"runner.py <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"noise_label","children":[{"title":"CIFAR10_noise_r0_5.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR10_noise_r0_1.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR10_noise_r0_6.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR10_noise_r0_2.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR10_noise_r0_3.pt <span style='color:#111;'> 390.97KB </span>","children":null,"spread":false},{"title":"test_label.pt <span style='color:#111;'> 78.46KB </span>","children":null,"spread":false},{"title":"CIFAR10_noise_r0_4.pt <span style='color:#111;'> 390.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"model.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"CIFAR-100","children":[{"title":"runner.py <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"noise_label","children":[{"title":"CIFAR100_noise_r0_2.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR100_noise_r0_1.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR100_noise_r0_3.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"CIFAR100_noise_r0_4.pt <span style='color:#111;'> 390.98KB </span>","children":null,"spread":false},{"title":"test_label.pt <span style='color:#111;'> 78.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"model.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"noise_data_cifar_100.py <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"decision_boundary.png <span style='color:#111;'> 284.55KB </span>","children":null,"spread":false},{"title":"Fashion_MNIST","children":[{"title":"runner.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"noise_data_fashion.py <span style='color:#111;'> 8.97KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"noise_label","children":[{"title":"Fashion_noise_r0_3.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false},{"title":"Fashion_noise_r0_6.pt <span style='color:#111;'> 469.11KB </span>","children":null,"spread":false},{"title":"Fashion_noise_r0_1.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false},{"title":"test.pt <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false},{"title":"Fashion_noise_r0_2.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false},{"title":"Fashion_noise_r0_5.pt <span style='color:#111;'> 469.11KB </span>","children":null,"spread":false},{"title":"Fashion_noise_r0_4.pt <span style='color:#111;'> 469.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 653B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"raw","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 4.22MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.82KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 25.20MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"processed","children":[{"title":"test.pt <span style='color:#111;'> 7.55MB </span>","children":null,"spread":false},{"title":"training.pt <span style='color:#111;'> 45.32MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明