Mate:基于MatConvNet的MATLAB中面向对象的CPUGPU ConvNets-源码

上传者: 42139302 | 上传时间: 2021-06-18 13:05:25 | 文件大小: 43KB | 文件类型: ZIP
#伴侣 Maté是一个用于 ConvNets(卷积神经网络)的 MATLAB 库。 Maté 源自 。 Maté 使用 MatConvNet 例程进行多个时间关键操作,并且可以加载和操作由提供的预。 Maté 是面向对象的,其目标是简化原型设计和实验,特别是尽量减少尝试新的非标准层和新的非标准网络图所需的努力。 Maté 延续了以与咖啡因相关的命名 ConvNet 库的传统。 其他也启发了 Maté 的此类库包括 (Python、CPU)和 (具有接口的 C++、CPU/GPU)。 ##Functionality Maté 提供以下功能: 新层的简单定义(只需定义前向过程,如果需要,后向过程;在 MATLAB 中通常需要几行)。 在 MATLAB 代码中轻松定义和训练非链网络(可以使用任何有向无环图)。 轻松加载和操作预训练网络。 借助 MATLAB Parallel Too

文件下载

资源详情

[{"title":"( 62 个子文件 43KB ) Mate:基于MatConvNet的MATLAB中面向对象的CPUGPU ConvNets-源码","children":[{"title":"Mate-master","children":[{"title":"toolbox","children":[{"title":"MateAllDistLayer.m <span style='color:#111;'> 422B </span>","children":null,"spread":false},{"title":"MateScalarProductLayer.m <span style='color:#111;'> 484B </span>","children":null,"spread":false},{"title":"MateSliceLayer.m <span style='color:#111;'> 750B </span>","children":null,"spread":false},{"title":"MateFlattenLayer.m <span style='color:#111;'> 360B </span>","children":null,"spread":false},{"title":"MateNNAccuracyLayer.m <span style='color:#111;'> 809B </span>","children":null,"spread":false},{"title":"MateDoubleMarginLossLayer.m <span style='color:#111;'> 922B </span>","children":null,"spread":false},{"title":"MateBilinearAllDistLayer.m <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"MateArgmaxCounterLayer.m <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"MateLayer.m <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"extra","children":[{"title":"getPlate.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"readMatConvNet.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"MateMetricHingeLossLayer.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"MateWeightedLogisticLossLayer.m <span style='color:#111;'> 778B </span>","children":null,"spread":false},{"title":"MateFullLayer.m <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"MateAllProdLayer.m <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"MateBilinearLayer.m <span style='color:#111;'> 978B </span>","children":null,"spread":false},{"title":"MateMaxLayer.m <span style='color:#111;'> 641B </span>","children":null,"spread":false},{"title":"MateSoftmaxLossLayer.m <span style='color:#111;'> 760B </span>","children":null,"spread":false},{"title":"MateSqueezeLayer.m <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"MateFeatureOffsetLayer.m <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"MatePreprocessImageLayer.m <span style='color:#111;'> 869B </span>","children":null,"spread":false},{"title":"MatePairwiseDistLayer.m <span style='color:#111;'> 509B </span>","children":null,"spread":false},{"title":"MateSplitLayer.m <span style='color:#111;'> 567B </span>","children":null,"spread":false},{"title":"MateSoftmaxWithBalancingLayer.m <span style='color:#111;'> 692B </span>","children":null,"spread":false},{"title":"MateL2NormalizeLayer.m <span style='color:#111;'> 755B </span>","children":null,"spread":false},{"title":"MateCatLayer.m <span style='color:#111;'> 846B </span>","children":null,"spread":false},{"title":"MateSumMergeLayer.m <span style='color:#111;'> 606B </span>","children":null,"spread":false},{"title":"MateMultilabelErrorLayer.m <span style='color:#111;'> 494B </span>","children":null,"spread":false},{"title":"MateSoftmaxLayer.m <span style='color:#111;'> 539B </span>","children":null,"spread":false},{"title":"@MateNet","children":[{"title":"init.m <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"getBlob.m <span style='color:#111;'> 178B </span>","children":null,"spread":false},{"title":"disp.m <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"dispBlob.m <span style='color:#111;'> 905B </span>","children":null,"spread":false},{"title":"dispLayer.m <span style='color:#111;'> 170B </span>","children":null,"spread":false},{"title":"dispTimes.m <span style='color:#111;'> 722B </span>","children":null,"spread":false},{"title":"makePass.m <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"getLayer.m <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"trainNet.m <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"MateNet.m <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"move.m <span style='color:#111;'> 578B </span>","children":null,"spread":false}],"spread":false},{"title":"MateParams.m <span style='color:#111;'> 281B </span>","children":null,"spread":false},{"title":"MateFeatureNormLayer.m <span style='color:#111;'> 617B </span>","children":null,"spread":false},{"title":"MateRankErrorLayer.m <span style='color:#111;'> 927B </span>","children":null,"spread":false},{"title":"MateReluLayer.m <span style='color:#111;'> 331B </span>","children":null,"spread":false},{"title":"MateArgmaxLayer.m <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"MateLogisticLossLayer.m <span style='color:#111;'> 740B </span>","children":null,"spread":false},{"title":"MatePoolLayer.m <span style='color:#111;'> 641B </span>","children":null,"spread":false},{"title":"MateConvLayer.m <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"MateDropoutLayer.m <span style='color:#111;'> 1010B </span>","children":null,"spread":false},{"title":"MateLogLossLayer.m <span style='color:#111;'> 707B </span>","children":null,"spread":false}],"spread":false},{"title":"docs","children":[{"title":"network.md <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"training.md <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"pretrained.md <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"catalog.md <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"layer.md <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":"MateUsePretrained.m <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"MateMnistSiamese.m <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"MateMnistClassify.m <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"getMnistImdb.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"MateMnistAllDist.m <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"setup.m <span style='color:#111;'> 131B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明