上传者: 42138703
|
上传时间: 2021-12-29 22:46:40
|
文件大小: 12KB
|
文件类型: -
使用R的集成方法
######我已经完成了关于集成方法的个人项目(论文)。 首先,我对不同的集成方法进行了背景研究,然后在基础机器学习算法上实现了Boosting,AdaBoost,Bagging和随机森林技术。 我使用了提升方法来提高弱小的学习者(如决策树桩)的性能。 为决策树(包括回归和分类问题)和KNN分类器实施装袋。 将随机森林用作分类树。 我已经在使用不同阈值的逻辑回归算法上实现了一种特殊的增强算法,称为“ AdaBoost”。 然后绘制不同的图形,例如错误率与增强,装袋和随机森林迭代的关系。 比较装袋与提振的结果。 在应用集成方法之前和应用集成方法之后,分析了分类器的性能。 使用了诸如交叉验证,MSE,PRSS,ROC曲线,混淆矩阵和袋外误差估计之类的不同模型评估技术来评估集成技术的性能。