使用Google的BERT进行命名实体识别(CoNLL-2003作为数据集)。-Python开发

上传者: 42138376 | 上传时间: 2021-09-29 15:08:15 | 文件大小: 2.09MB | 文件类型: ZIP
使用google BERT进行CoNLL-2003 NER! 为了获得更好的性能,您可以尝试使用fennlp,有关更多详细信息,请参见fennlp。 BERT-NER版本2使用Google的BERT进行命名实体识别(CoNLL-2003作为数据集)。 原始版本(请参阅old_version以获得更多详细信息)包含一些硬代码,并且缺少相应的注释,因此不方便理解。 因此,在此更新版本中,有一些新的思想和技巧(关于数据预处理和图层设计)可以帮助您快速实现微调模型(您只需要

文件下载

资源详情

[{"title":"( 23 个子文件 2.09MB ) 使用Google的BERT进行命名实体识别(CoNLL-2003作为数据集)。-Python开发","children":[{"title":"BERT-NER-master","children":[{"title":"function_test.py <span style='color:#111;'> 778B </span>","children":null,"spread":false},{"title":"bert","children":null,"spread":false},{"title":"output","children":[{"title":"result_dir","children":[{"title":"label_test.txt <span style='color:#111;'> 401.68KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"dev.txt <span style='color:#111;'> 803.41KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 725.60KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 3.11MB </span>","children":null,"spread":false}],"spread":true},{"title":"run_ner.sh <span style='color:#111;'> 609B </span>","children":null,"spread":false},{"title":"old_version","children":[{"title":"NERdata","children":[{"title":"dev.txt <span style='color:#111;'> 808.05KB </span>","children":null,"spread":false},{"title":"test.txt <span style='color:#111;'> 730.56KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 3.13MB </span>","children":null,"spread":false}],"spread":true},{"title":"tf_metrics.py <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"picture1.png <span style='color:#111;'> 11.65KB </span>","children":null,"spread":false},{"title":"picture2.png <span style='color:#111;'> 12.52KB </span>","children":null,"spread":false},{"title":"picturen.png <span style='color:#111;'> 16.41KB </span>","children":null,"spread":false},{"title":"BERT_NER.py <span style='color:#111;'> 23.62KB </span>","children":null,"spread":false},{"title":"conlleval.pl <span style='color:#111;'> 12.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.18KB </span>","children":null,"spread":false},{"title":"middle_data","children":[{"title":"label2id.pkl <span style='color:#111;'> 184B </span>","children":null,"spread":false}],"spread":true},{"title":"cased_L-12_H-768_A-12","children":[{"title":"download_from_bert_first.txt <span style='color:#111;'> 208.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"BERT_NER.py <span style='color:#111;'> 27.31KB </span>","children":null,"spread":false},{"title":"conlleval.pl <span style='color:#111;'> 12.83KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明