evaluating-rewards:比较和评估奖励函数的库

上传者: 42133899 | 上传时间: 2023-03-29 11:40:46 | 文件大小: 260KB | 文件类型: ZIP
评估奖励 evaluating_rewards是一个用于比较和评估奖励函数的库。 随附的论文描述了在这个存储库中实现的方法。 入门 安装 要安装evaluating_rewards ,请克隆存储库并运行: pip install evaluating_rewards/ 要在开发人员模式下安装以便立即可以进行编辑: pip install -e evaluating_rewards/ 该软件包与 Python 3.6 及更高版本兼容。 不支持 Python 2。 计算 EPIC 距离 evaluating_rewards.analysis.dissimilarity_heatmaps.plot_epic_heatmap脚本提供了一个方便的前端来生成奖励模型之间 EPIC 距离的热图。 例如,要从论文中复制图 2(a),只需运行: python -m evaluating_rewar

文件下载

资源详情

[{"title":"( 114 个子文件 260KB ) evaluating-rewards:比较和评估奖励函数的库","children":[{"title":"setup.cfg <span style='color:#111;'> 540B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":".dockerignore <span style='color:#111;'> 10B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"epic_demo.ipynb <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"noto_running.pdf <span style='color:#111;'> 18.26KB </span>","children":null,"spread":false},{"title":"mozilla_cheetah.pdf <span style='color:#111;'> 17.22KB </span>","children":null,"spread":false},{"title":"noto_snail.pdf <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"vexel_backflip.pdf <span style='color:#111;'> 5.05KB </span>","children":null,"spread":false},{"title":"aggregated.pkl <span style='color:#111;'> 9.95KB </span>","children":null,"spread":false},{"title":"combined_distances.py <span style='color:#111;'> 38.42KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 33.94KB </span>","children":null,"spread":false},{"title":"tabular.py <span style='color:#111;'> 20.92KB </span>","children":null,"spread":false},{"title":"synthetic.py <span style='color:#111;'> 17.40KB </span>","children":null,"spread":false},{"title":"epic.py <span style='color:#111;'> 17.10KB </span>","children":null,"spread":false},{"title":"mujoco.py <span style='color:#111;'> 16.26KB </span>","children":null,"spread":false},{"title":"test_rewards.py <span style='color:#111;'> 16.00KB </span>","children":null,"spread":false},{"title":"preferences.py <span style='color:#111;'> 15.95KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 15.69KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"test_synthetic.py <span style='color:#111;'> 13.29KB </span>","children":null,"spread":false},{"title":"gridworld_reward_heatmap.py <span style='color:#111;'> 13.23KB </span>","children":null,"spread":false},{"title":"plot_heatmap.py <span style='color:#111;'> 13.19KB </span>","children":null,"spread":false},{"title":"point_mass.py <span style='color:#111;'> 13.09KB </span>","children":null,"spread":false},{"title":"epic_sample.py <span style='color:#111;'> 12.87KB </span>","children":null,"spread":false},{"title":"npec.py <span style='color:#111;'> 12.02KB </span>","children":null,"spread":false},{"title":"plot_gridworld_heatmap.py <span style='color:#111;'> 9.35KB </span>","children":null,"spread":false},{"title":"erc.py <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"rl_common.py <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"common_config.py <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"npec.py <span style='color:#111;'> 7.80KB </span>","children":null,"spread":false},{"title":"results.py <span style='color:#111;'> 7.76KB </span>","children":null,"spread":false},{"title":"train_experts.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"test_tabular.py <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"point_mass.py <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"rollout_return.py <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":"heatmaps.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"serialize.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"test_scripts.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"test_epic_sample.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"plot_pm_reward.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"comparisons.py <span style='color:#111;'> 5.81KB </span>","children":null,"spread":false},{"title":"monte_carlo.py <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"stylesheets.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"mixture.py <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"plot_gridworld_reward.py <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"train_preferences.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"train_regress.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"script_utils.py <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"transformations.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"regress_utils.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"reward_masks.py <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"test_comparisons.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"test_policies.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"env_rewards.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"gridworld_rewards.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"test_envs.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"aggregated.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"test_util.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"train_adversarial.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"visualize.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"env_rewards.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"conftest.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"eval_policy.py <span style='color:#111;'> 959B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 804B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 634B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 631B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 629B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 629B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 613B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 606B </span>","children":null,"spread":false},{"title":"version.py <span style='color:#111;'> 103B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pylintrc <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"transfer_point_maze.sh <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"transfer.sh <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"common.sh <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"hyper_sweep.sh <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"visualize_pm_reward.sh <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"train_preferences.sh <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"train_regress.sh <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"doubleblind.sh <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"transfer_point_maze_checkpoints.sh <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"launch_docker.sh <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"train_irl.sh <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"greedy_pm_hardcoded.sh <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明