gpt-3:GPT-3:语言模型鲜为人知-源码

上传者: 42133861 | 上传时间: 2022-01-01 18:36:28 | 文件大小: 2.16MB | 文件类型: -
GPT-3:语言模型不多见 通过对大量文本进行预培训,然后对特定任务进行微调,最近的工作证明了在许多NLP任务和基准方面的巨大收获。 尽管在结构上通常与任务无关,但此方法仍需要成千上万个示例的特定于任务的微调数据集。 相比之下,人类通常只能通过几个示例或简单的指令来执行新的语言任务-当前的NLP系统在很大程度上仍难以做到这一点。 在这里,我们表明,扩展语言模型可以极大地提高与任务无关的性能,很少出现问题,有时甚至可以通过现有的最新微调方法达到竞争力。 具体来说,我们训练了GPT-3(一种具有1750亿个参数的自回归语言模型,比以前的任何非稀疏语言模型多10倍),并在很少的设置下测试其性能。 对于所有任务,应用GPT-3时不会进行任何梯度更新或微调,而仅通过与模型的文本交互指定任务和少量演示即可。 GPT-3在许多NLP数据集上均具有出色的性能,包括翻译,问题解答和完形填空任务,以及一些需要

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明