Attention-PyTorch:注意力机制实践-源码

上传者: 42133753 | 上传时间: 2021-12-15 21:19:57 | 文件大小: 8.93MB | 文件类型: -
Attention分享 周知瑞@研发中心, Jun 20, 2018 (一)深度学习中的直觉 3 X 1 and 1 X 3 代替 3 X 3 LSTM中的门设计 生成对抗网络 Attention机制的本质来自于人类视觉注意力机制。人们视觉在感知东西的时候一般不会是一个场景从到头看到尾每次全部都看,而往往是根据需求观察注意特定的一部分。而且当人们发现一个场景经常在某部分出现自己想观察的东西时,人们会进行学习在将来再出现类似场景时把注意力放到该部分上。: 将更多的注意力聚焦到有用的部分,Attention的本质就是加权。但值得注意的是,同一张图片,人在做不同任务的时候,注意力的权重分布应该是不同的。 基于以上的直觉,Attention可以用于: 学习权重分布: 这个加权可以是保留所有分量均做加权(即soft attention);也可以是在分布中以某种采样策略选取部分分量(即hard att

文件下载

评论信息

  • qq_34136372 :
    用处不大,github都比这个全
    2021-11-08
  • weixin_45839122 :
    不值这么多币
    2021-08-25

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明