PyContrast:PyTorch实施对比学习方法;很棒的学习论文清单-源码

上传者: 42133753 | 上传时间: 2021-09-25 11:03:24 | 文件大小: 154KB | 文件类型: ZIP
PyContrast 此repo列出了最新的对比学习论文,并包括其中许多代码。 论文清单 找到很棒的对比学习。 PyTorch代码 有关SoTA方法的参考实现(例如InstDis,CMC,MoCo等),请参见 。 预训练模型 提供了一组ImageNet无监督的预训练模型。在找到它们。 物体检测 在PASCAL VOC和COCO上,无监督的预训练模型优于监督的预训练模型。查找。

文件下载

资源详情

[{"title":"( 68 个子文件 154KB ) PyContrast:PyTorch实施对比学习方法;很棒的学习论文清单-源码","children":[{"title":"PyContrast-master","children":[{"title":"pycontrast","children":[{"title":"memory","children":[{"title":"mem_bank.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"build_memory.py <span style='color:#111;'> 567B </span>","children":null,"spread":false},{"title":"mem_moco.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"alias_multinomial.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"figures","children":[{"title":"models.png <span style='color:#111;'> 114.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"learning","children":[{"title":"util.py <span style='color:#111;'> 994B </span>","children":null,"spread":false},{"title":"base_trainer.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"contrast_trainer.py <span style='color:#111;'> 19.19KB </span>","children":null,"spread":false},{"title":"linear_trainer.py <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"util.py <span style='color:#111;'> 14.62KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"RandAugment.py <span style='color:#111;'> 13.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"options","children":[{"title":"train_options.py <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"main_linear.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"detection","children":[{"title":"configs","children":[{"title":"R_101_CasFPN_1x.yaml <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"R_50_FPN_1x_rand.yaml <span style='color:#111;'> 71B </span>","children":null,"spread":false},{"title":"X_101_FPN_2x.yaml <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"R_101_CasFPN_2x.yaml <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"R_50_C4_2x_infomin.yaml <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"R_101_C4_1x.yaml <span style='color:#111;'> 333B </span>","children":null,"spread":false},{"title":"X_152_FPN_1x_infomin.yaml <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"R_101_CasFPN_1x_infomin.yaml <span style='color:#111;'> 206B </span>","children":null,"spread":false},{"title":"R_50_C4_2x.yaml <span style='color:#111;'> 78B </span>","children":null,"spread":false},{"title":"R_50_FPN_6x.yaml <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"R_50_FPN_6x_infomin.yaml <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"R_50_FPN_2x_rand.yaml <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"R_101_C4_2x_infomin.yaml <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"R_101_C4_1x_infomin.yaml <span style='color:#111;'> 202B </span>","children":null,"spread":false},{"title":"R_50_FPN_2x_infomin.yaml <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"X_101_FPN_2x_infomin.yaml <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"R_50_FPN_2x.yaml <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"X_101_FPN_1x_infomin.yaml <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"R_101_FPN_2x_infomin.yaml <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"R_50_FPN_1x.yaml <span style='color:#111;'> 429B </span>","children":null,"spread":false},{"title":"R_101_C4_2x.yaml <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"R_101_FPN_2x.yaml <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"R_101_FPN_1x.yaml <span style='color:#111;'> 431B </span>","children":null,"spread":false},{"title":"R_50_C4_1x.yaml <span style='color:#111;'> 307B </span>","children":null,"spread":false},{"title":"R_101_CasFPN_2x_infomin.yaml <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"R_101_FPN_1x_infomin.yaml <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"X_152_FPN_1x.yaml <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"Base-RCNN-FPN.yaml <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"X_101_FPN_1x.yaml <span style='color:#111;'> 564B </span>","children":null,"spread":false},{"title":"Base-RCNN-C4-BN.yaml <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"R_50_FPN_6x_rand.yaml <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"R_50_C4_1x_infomin.yaml <span style='color:#111;'> 202B </span>","children":null,"spread":false},{"title":"R_50_FPN_1x_infomin.yaml <span style='color:#111;'> 202B </span>","children":null,"spread":false}],"spread":false},{"title":"convert_pretrained.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"MODEL_ZOO.md <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"RUN.md <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"INSTALL.md <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"networks","children":[{"title":"util.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"resnest.py <span style='color:#111;'> 17.08KB </span>","children":null,"spread":false},{"title":"build_linear.py <span style='color:#111;'> 302B </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 17.33KB </span>","children":null,"spread":false},{"title":"resnet_cmc.py <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"build_backbone.py <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"main_contrast.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false}],"spread":false},{"title":"AWESOME_CONTRASTIVE_LEARNING.md <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 7B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明