traffic-big-data-theory-and-applications:《交通大数据理论与方法》-源码

上传者: 42133680 | 上传时间: 2021-09-08 10:20:23 | 文件大小: 870KB | 文件类型: ZIP
《交通大数据理论与方法》 目录 背景 随着信息通讯技术的不断发展,各行各业都产生了海量的数据,与此同时,一门新的学科应运而生—— 数据挖掘。数据挖掘是从大量数据(包括文本数据)中挖掘出隐含的、先前未知的、对决策有潜在价值的信 息、知识和关联关系,并基于这些信息和相应规则建立可用于决策支持与优化分析的模型,提供可支持预测 性决策的方法和工具。此外,数据挖掘还可帮助企业和科研团体发现业务与学科中的新趋势,揭示已知的 事实,预测未知的结果,因此“数据挖掘”已成为其保持竞争力的必要手段。 在大数据发展的背景下,交通领域的各类大数据同样以惊人的速度产生,并被应用于各种各样的应用 场景。例如,基于手机信令数据分析城市人口分布及交通出行分布特征,从而为交通规划的进一步决策提 供量化依据;利用网约车数据分析城市路网流量,进而优化信号配时方案,提升交通控制方案的效率;利用 线圈、视频、浮动车等多源数据,实现

文件下载

资源详情

[{"title":"( 71 个子文件 870KB ) traffic-big-data-theory-and-applications:《交通大数据理论与方法》-源码","children":[{"title":"traffic-big-data-theory-and-applications-main","children":[{"title":"第3章 数据预处理与探索性数据分析","children":[{"title":"Readme.md <span style='color:#111;'> 49B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-chap3-example3.1.2.py <span style='color:#111;'> 997B </span>","children":null,"spread":false},{"title":"code-chap3-example3.3.4.py <span style='color:#111;'> 357B </span>","children":null,"spread":false},{"title":"code-chap3-example3.3.2.py <span style='color:#111;'> 497B </span>","children":null,"spread":false},{"title":"code-chap3-example3.2.py <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第2章 Python数据分析应用","children":[{"title":"Readme.md <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-2.8.2.3.py <span style='color:#111;'> 624B </span>","children":null,"spread":false},{"title":"code-chap2-1.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"code-2.2.2.py <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"code-2.8.2.2.py <span style='color:#111;'> 999B </span>","children":null,"spread":false},{"title":"code-2.7.py <span style='color:#111;'> 280B </span>","children":null,"spread":false},{"title":"code-2.8.3.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"code-2.8.4.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"code-2.3.1.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"code-2.6.py <span style='color:#111;'> 254B </span>","children":null,"spread":false},{"title":"code-2.3.3.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第1章 绪论","children":[{"title":"Readme.md <span style='color:#111;'> 16B </span>","children":null,"spread":false}],"spread":true},{"title":"第7章 支持向量机","children":[{"title":"Readme.md <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"example-1.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第9章 聚类分析","children":[{"title":"Readme.md <span style='color:#111;'> 22B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-chap9-example2.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"code-chap9-example4.py <span style='color:#111;'> 804B </span>","children":null,"spread":false},{"title":"code-chap9-example1.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"code-chap9-example3.py <span style='color:#111;'> 786B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"images","children":[{"title":"cover.png <span style='color:#111;'> 138.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"样例数据","children":[{"title":"generate_dataset.py <span style='color:#111;'> 8.82KB </span>","children":null,"spread":false},{"title":"样例数据使用说明.md <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"第12章 深度学习","children":[{"title":"Readme.md <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"example-2.py <span style='color:#111;'> 6.73KB </span>","children":null,"spread":false},{"title":"example-1.py <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第10章 集成学习","children":[{"title":"Readme.md <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"example-1.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第6章 线性模型","children":[{"title":"Readme.md <span style='color:#111;'> 22B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"example-2.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"case1.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"case2.py <span style='color:#111;'> 265B </span>","children":null,"spread":false},{"title":"example-1.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"论文模板","children":[{"title":"Word模板","children":[{"title":"Word中文模板.docx <span style='color:#111;'> 159.46KB </span>","children":null,"spread":false},{"title":"Word英文模板.docx <span style='color:#111;'> 160.09KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第8章 决策树","children":[{"title":"Readme.md <span style='color:#111;'> 19B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-chap8-example-5.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"code-chap8-example-8.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"traffic_condition.dot <span style='color:#111;'> 790B </span>","children":null,"spread":false},{"title":"code-chap8-example-1.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"code-chap8-example-1.ipynb <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"code-chap8-example-5.ipynb <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"code-chap8-example-6.ipynb <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"example8-2.csv <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"code-chap8-example-7.ipynb <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"example8-1.csv <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"code-chap8-example-8.ipynb <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"code-chap8-example-7.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"code-chap8-example-6.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"第11章 人工神经网络","children":[{"title":"Readme.md <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-chap11-11.3.py <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"code-chap11-11.2.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"code-chap11-11.5.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"example-1.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"第4章 大数据可视化的Python 实践","children":[{"title":"Readme.md <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-chap4-example4.3.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"code-chap4-example4.2.py <span style='color:#111;'> 10.96KB </span>","children":null,"spread":false},{"title":"code-chap4-example4.1.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"code-chap4-example4.4.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"第5章 机器学习简介","children":[{"title":"Readme.md <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"配套代码","children":[{"title":"code-chap5-5.4.2.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"code-chap5-5.4.3.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"课程竞赛","children":[{"title":"2021","children":[{"title":"train.csv <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"submission_example.csv <span style='color:#111;'> 13.23KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 141.02KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明