[{"title":"( 27 个子文件 9.06MB ) 面罩检测:使用YOLO网络(Darknet)和更快的R-CNN网络(PyTorch)在Google Colab中进行面罩检测-源码","children":[{"title":"FacemaskDetection-main","children":[{"title":"images","children":[{"title":"tpfppng.PNG <span style='color:#111;'> 145.61KB </span>","children":null,"spread":false},{"title":"mask1.png <span style='color:#111;'> 849.62KB </span>","children":null,"spread":false},{"title":"mask2.png <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"map.png <span style='color:#111;'> 125.57KB </span>","children":null,"spread":false},{"title":"mask3.png <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"Train_FRCNN_PyTorch.ipynb <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"utilities","children":[{"title":"data_utils","children":[{"title":"split_dataset.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"Dataset.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"split_dataset_over_sampling.py <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"transforms.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"YOLO_evaluation","children":[{"title":"detection_utils.py <span style='color:#111;'> 8.65KB </span>","children":null,"spread":false},{"title":"video_converter.py <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"tf_detection_utils.py <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false},{"title":"detect_video.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"create_annotations.py <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"train_eval","children":[{"title":"engine.py <span style='color:#111;'> 8.22KB </span>","children":null,"spread":false},{"title":"evaluate_yolometric.m <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 9.56KB </span>","children":null,"spread":false},{"title":"coco_utils","children":[{"title":"coco_utils.py <span style='color:#111;'> 8.34KB </span>","children":null,"spread":false},{"title":"coco_eval.py <span style='color:#111;'> 11.70KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"report.pdf <span style='color:#111;'> 5.82MB </span>","children":null,"spread":false},{"title":"Train_YoloV3_Darknet.ipynb <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]