MachineLearning-clustering-源码

上传者: 42132354 | 上传时间: 2021-09-10 15:00:44 | 文件大小: 31.75MB | 文件类型: ZIP
#Context作者:BlastChar- ://www.kaggle.com/blastchar来源: ://www.kaggle.com/blastchar/telco-customer-churn-[IBM示例数据集]电信客户流失 内容 每行代表一个客户,每列包含在元数据列中描述的客户属性。 数据集包含有关以下信息: 在上个月内离开的客户-该列称为每个客户都已注册的Churn Services-电话,多条线路,互联网,在线安全,在线备份,设备保护,技术支持以及流媒体电视和电影客户帐户信息-他们成为客户的时间,合同,付款方式,无纸化账单,月度费用和总费用关于客户的人口统计信息-性别,年龄范围以及是否有合作伙伴和受扶养人行数:7043列数:21

文件下载

资源详情

[{"title":"( 67 个子文件 31.75MB ) MachineLearning-clustering-源码","children":[{"title":"MachineLearning-clustering-main","children":[{"title":"images","children":[{"title":"oversampling","children":[{"title":"regression","children":[{"title":"feature_engineering_dataset_decision_tree <span style='color:#111;'> 313.87KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree.pdf <span style='color:#111;'> 283.31KB </span>","children":null,"spread":false},{"title":"feature_engineering_dataset_decision_tree.pdf <span style='color:#111;'> 350.25KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree <span style='color:#111;'> 307.02KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree <span style='color:#111;'> 247.87KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree.pdf <span style='color:#111;'> 343.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"classification","children":[{"title":"feature_engineering_dataset_decision_tree <span style='color:#111;'> 234.40KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree.pdf <span style='color:#111;'> 185.39KB </span>","children":null,"spread":false},{"title":"feature_engineering_dataset_decision_tree.pdf <span style='color:#111;'> 250.95KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree <span style='color:#111;'> 217.40KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree <span style='color:#111;'> 165.88KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree.pdf <span style='color:#111;'> 239.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"without-oversampling","children":[{"title":"regression","children":[{"title":"feature_engineering_dataset_decision_tree <span style='color:#111;'> 290.36KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree.pdf <span style='color:#111;'> 268.70KB </span>","children":null,"spread":false},{"title":"feature_engineering_dataset_decision_tree.pdf <span style='color:#111;'> 322.11KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree <span style='color:#111;'> 282.28KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree <span style='color:#111;'> 235.39KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree.pdf <span style='color:#111;'> 314.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"classification","children":[{"title":"feature_engineering_dataset_decision_tree <span style='color:#111;'> 224.17KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree.pdf <span style='color:#111;'> 145.19KB </span>","children":null,"spread":false},{"title":"feature_engineering_dataset_decision_tree.pdf <span style='color:#111;'> 239.45KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree <span style='color:#111;'> 190.39KB </span>","children":null,"spread":false},{"title":"PCA_dataset_decision_tree <span style='color:#111;'> 127.90KB </span>","children":null,"spread":false},{"title":"EDA_dataset_decision_tree.pdf <span style='color:#111;'> 212.34KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"datasets","children":[{"title":"EDA_df.csv <span style='color:#111;'> 673.78KB </span>","children":null,"spread":false},{"title":"oversampling","children":[{"title":"feature_engineering_regression_telco_customer_churn.csv <span style='color:#111;'> 287.30KB </span>","children":null,"spread":false},{"title":"PCA_classification.csv <span style='color:#111;'> 5.34MB </span>","children":null,"spread":false},{"title":"EDA_telco_customer_churn.csv <span style='color:#111;'> 984.98KB </span>","children":null,"spread":false},{"title":"PCA_regression.csv <span style='color:#111;'> 5.36MB </span>","children":null,"spread":false},{"title":"feature_engineering_classification_telco_customer_churn.csv <span style='color:#111;'> 235.43KB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"EDA_train.csv <span style='color:#111;'> 778.32KB </span>","children":null,"spread":false},{"title":"feature_engineering_classification_train.csv <span style='color:#111;'> 188.32KB </span>","children":null,"spread":false},{"title":"PCA_regression_train.csv <span style='color:#111;'> 4.19MB </span>","children":null,"spread":false},{"title":"feature_engineering_regression_train.csv <span style='color:#111;'> 220.12KB </span>","children":null,"spread":false},{"title":"PCA_classification_train.csv <span style='color:#111;'> 4.19MB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"EDA_test.csv <span style='color:#111;'> 194.92KB </span>","children":null,"spread":false},{"title":"PCA_classification_test.csv <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"feature_engineering_regression_test.csv <span style='color:#111;'> 55.03KB </span>","children":null,"spread":false},{"title":"feature_engineering_classification_test.csv <span style='color:#111;'> 47.20KB </span>","children":null,"spread":false},{"title":"PCA_regression_test.csv <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"raw_oversampling_telco_customer_churn.csv <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"raw_telco_customer_churn.csv <span style='color:#111;'> 954.59KB </span>","children":null,"spread":false},{"title":"without-oversampling","children":[{"title":"EDA_df.csv <span style='color:#111;'> 673.78KB </span>","children":null,"spread":false},{"title":"feature_engineering_regression_telco_customer_churn.csv <span style='color:#111;'> 198.81KB </span>","children":null,"spread":false},{"title":"PCA_classification.csv <span style='color:#111;'> 3.64MB </span>","children":null,"spread":false},{"title":"PCA_regression.csv <span style='color:#111;'> 3.65MB </span>","children":null,"spread":false},{"title":"feature_engineering_classification_telco_customer_churn.csv <span style='color:#111;'> 160.81KB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"EDA_train.csv <span style='color:#111;'> 531.91KB </span>","children":null,"spread":false},{"title":"feature_engineering_classification_train.csv <span style='color:#111;'> 128.67KB </span>","children":null,"spread":false},{"title":"PCA_regression_train.csv <span style='color:#111;'> 2.86MB </span>","children":null,"spread":false},{"title":"feature_engineering_regression_train.csv <span style='color:#111;'> 151.88KB </span>","children":null,"spread":false},{"title":"PCA_classification_train.csv <span style='color:#111;'> 2.85MB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"EDA_test.csv <span style='color:#111;'> 133.27KB </span>","children":null,"spread":false},{"title":"PCA_classification_test.csv <span style='color:#111;'> 730.94KB </span>","children":null,"spread":false},{"title":"feature_engineering_regression_test.csv <span style='color:#111;'> 37.93KB </span>","children":null,"spread":false},{"title":"feature_engineering_classification_test.csv <span style='color:#111;'> 32.23KB </span>","children":null,"spread":false},{"title":"PCA_regression_test.csv <span style='color:#111;'> 732.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"journal_reference.pdf <span style='color:#111;'> 2.01MB </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"data_preprocessing_without_oversampling_dataset.ipynb <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"content_of_dataset.ipynb <span style='color:#111;'> 14.77KB </span>","children":null,"spread":false},{"title":"build_model_without_oversampling_dataset.ipynb <span style='color:#111;'> 473.48KB </span>","children":null,"spread":false},{"title":"clustering.ipynb <span style='color:#111;'> 13.57MB </span>","children":null,"spread":false},{"title":"exploratory_data_analysis.ipynb <span style='color:#111;'> 8.74MB </span>","children":null,"spread":false},{"title":"build_model_with_oversampling_dataset.ipynb <span style='color:#111;'> 481.60KB </span>","children":null,"spread":false},{"title":"HTML","children":[{"title":"clustering.html <span style='color:#111;'> 6.70MB </span>","children":null,"spread":false}],"spread":true},{"title":"data_preprocessing_with_oversampling_dataset.ipynb <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 874B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明