EfficientNet-PyTorch:EfficientNet和EfficientNetV2的PyTorch实现(即将推出!)

上传者: 42132056 | 上传时间: 2021-05-27 17:28:19 | 文件大小: 1.77MB | 文件类型: ZIP
EfficientNet PyTorch 快速开始 使用pip install efficientnet_pytorch的net_pytorch并使用以下命令加载经过预训练的EfficientNet: from efficientnet_pytorch import EfficientNet model = EfficientNet . from_pretrained ( 'efficientnet-b0' ) 更新 更新(2021年4月2日) 已发布! 当您阅读本文时,我正在努力实现它:) 关于EfficientNetV2: EfficientNetV2是卷积网络的新家族,与以前的模型相比,它具有更快的训练速度和更好的参数效率。 为了开发该系列模型,我们将训练感知的神经体系结构搜索和缩放结合使用,以共同优化训练速度和参数效率。 从富含新操作(例如Fused-MBConv)的搜索空

文件下载

资源详情

[{"title":"( 34 个子文件 1.77MB ) EfficientNet-PyTorch:EfficientNet和EfficientNetV2的PyTorch实现(即将推出!)","children":[{"title":"EfficientNet-PyTorch-master","children":[{"title":"sotabench.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"workflows","children":[{"title":"main.yml <span style='color:#111;'> 463B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"tests","children":[{"title":"test_model.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"tf_to_pytorch","children":[{"title":"convert_tf_to_pt","children":[{"title":"run.sh <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"original_tf","children":[{"title":"preprocessing.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 15.37KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"eval_ckpt_main.py <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"efficientnet_model.py <span style='color:#111;'> 25.42KB </span>","children":null,"spread":false},{"title":"eval_ckpt_main_tf1.py <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":"efficientnet_builder.py <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"rename.sh <span style='color:#111;'> 148B </span>","children":null,"spread":false},{"title":"load_tf_weights.py <span style='color:#111;'> 10.17KB </span>","children":null,"spread":false},{"title":"download.sh <span style='color:#111;'> 630B </span>","children":null,"spread":false},{"title":"load_tf_weights_tf1.py <span style='color:#111;'> 10.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"pretrained_tensorflow","children":[{"title":"download.sh <span style='color:#111;'> 517B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1012B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"simple","children":[{"title":"img2.jpg <span style='color:#111;'> 16.97KB </span>","children":null,"spread":false},{"title":"labels_map.txt <span style='color:#111;'> 30.83KB </span>","children":null,"spread":false},{"title":"img.jpg <span style='color:#111;'> 113.35KB </span>","children":null,"spread":false},{"title":"example.ipynb <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"check.ipynb <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":true},{"title":"imagenet","children":[{"title":"main.py <span style='color:#111;'> 16.71KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"README.md <span style='color:#111;'> 219B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"setup.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"sotabench_setup.sh <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.96KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"efficientnet_pytorch","children":[{"title":"utils.py <span style='color:#111;'> 24.37KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 16.98KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明