[{"title":"( 25 个子文件 774KB ) Prol:扁球面函数(GPSF)的数值计算。 理论,代码(Matlab)和“开源证明”(Mathematica)","children":[{"title":"Prol-master","children":[{"title":"src","children":[{"title":"matlab","children":[{"title":"prolate_crea.m <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"polynomials","children":[{"title":"prolate_ZernikeNorm_ex.m <span style='color:#111;'> 796B </span>","children":null,"spread":false},{"title":"prolate_JacobiP_ex.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"prolate_xdZernikeNorm_coef.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"prolate_ZernikeNorm_ex_fromJacobi.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"service","children":[{"title":"prolate_crea_eigRatios.m <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"prolate_analyticgam.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"prolate_diffop_mat_full.m <span style='color:#111;'> 834B </span>","children":null,"spread":false},{"title":"prolate_numericalgam.m <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"prolate_diffop_mat_tridiag.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"prolate_ev.m <span style='color:#111;'> 647B </span>","children":null,"spread":false},{"title":"matlab_addpath_prol_src.m <span style='color:#111;'> 224B </span>","children":null,"spread":false},{"title":"matlab_example.m <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"CONTRIBUTING.md <span style='color:#111;'> 130B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.40KB </span>","children":null,"spread":false},{"title":"doc","children":[{"title":".gitignore <span style='color:#111;'> 37B </span>","children":null,"spread":false},{"title":"gpsf_report1.tex <span style='color:#111;'> 41.80KB </span>","children":null,"spread":false},{"title":"gpsf_report1_analytical_code.nb <span style='color:#111;'> 109.37KB </span>","children":null,"spread":false},{"title":"FinalPapers","children":[{"title":"gpsf_report1_arxiv_2017_10_06.zip <span style='color:#111;'> 218.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"bib.bib <span style='color:#111;'> 6.73KB </span>","children":null,"spread":false},{"title":"gpsf_report1.pdf <span style='color:#111;'> 519.31KB </span>","children":null,"spread":false},{"title":"figures","children":[{"title":".gitignore <span style='color:#111;'> 5B </span>","children":null,"spread":false},{"title":"gpsf_report1_figures.m <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"eig_notes.md <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]