CAECNNcode:一些用于深度隐写分析的代码

上传者: 42131790 | 上传时间: 2023-02-19 21:33:17 | 文件大小: 903KB | 文件类型: ZIP
隐写分析的深度学习 隐写术和隐写分析 隐秘术是通过稍微修改像素值来隐藏图像中的秘密消息的科学。 内容自适应隐写方案倾向于将消息嵌入复杂区域以逃避检测,这是当今最安全的方法。 空间领域的示例包括HUGO,WOW,S-UNIWARD。 与隐写术相对应,隐写分析是检测图像中隐藏数据的技术。 通常,将此任务表述为二进制分类问题,以区分掩护和隐身。 LSB隐写术封面和隐身术 1:封面(左)和隐秘(右) 2:覆盖物与隐身物相减的结果(有效载荷较小) J-UNIWARD隐写术猫盖和隐蔽物 3:掩护和隐身的减法结果(有效载荷= 0.3) 隐写分析的深度学习 与传统的计算机视觉任务不同,图像隐写分析的目的是要找到对盖子的噪声极低的嵌入操作。 因此,我的网络中没有maxpooling层,可以破坏隐写术引起的少量信息或功能。 一些结果 3:训练过程中,网络开始以50,000步(5个纪元)收敛 4:WOW0.

文件下载

资源详情

[{"title":"( 32 个子文件 903KB ) CAECNNcode:一些用于深度隐写分析的代码","children":[{"title":"CAECNNcode-master","children":[{"title":"input_data.py <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"easy work","children":[{"title":"yijianyunxing.py <span style='color:#111;'> 681B </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 15.85KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"S_1.pgm <span style='color:#111;'> 64.01KB </span>","children":null,"spread":false},{"title":"C_3.pgm <span style='color:#111;'> 64.01KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 16B </span>","children":null,"spread":false}],"spread":true},{"title":"readme.md <span style='color:#111;'> 109B </span>","children":null,"spread":false}],"spread":true},{"title":"fliter.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"1_stego wow_0.4.pgm <span style='color:#111;'> 256.01KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"CAECNNcode.iml <span style='color:#111;'> 459B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 272B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"tfrecord.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"rename.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"WOW0.5random_CNN.png <span style='color:#111;'> 150.61KB </span>","children":null,"spread":false},{"title":"coverstego.jpg <span style='color:#111;'> 183.48KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 140.13KB </span>","children":null,"spread":false},{"title":"subtraction.jpg <span style='color:#111;'> 17.83KB </span>","children":null,"spread":false},{"title":"S-UNIWARD0.2.png <span style='color:#111;'> 76.39KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"train1.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"new version","children":[{"title":"input_data1.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"model1.py <span style='color:#111;'> 5.18KB </span>","children":null,"spread":false},{"title":"convert2tfrecord.py <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"train2.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 548B </span>","children":null,"spread":false}],"spread":true},{"title":"1_Cover.pgm <span style='color:#111;'> 256.01KB </span>","children":null,"spread":false},{"title":"onehot.py <span style='color:#111;'> 773B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明