Siamese-Network-for-One-shot-Learning:训练神经网络的项目,仅举一个例子

上传者: 42131790 | 上传时间: 2022-03-29 15:07:37 | 文件大小: 12.43MB | 文件类型: -
使用基于内核的激活功能为一击学习改善暹罗网络( ) 人类通过很少的示例学习新事物,例如,一个孩子可以从一张图片中概括“狗”的概念,但是机器学习系统需要大量示例来学习其功能。 特别是当受到刺激时,人们似乎能够快速理解新概念,然后在将来的感知中认识到这些概念的变体。 机器学习作为一个领域已经在各种任务(例如分类,Web搜索,图像和语音识别)上取得了巨大的成功。 但是,这些模型通常在低数据情况下效果不佳。 ' 这是一次射击学习背后的主要动机。 用较少的示例训练模型,但无需大量重新训练即可将其推广到不熟悉的类别。 引文 如果您发现我们的代码有用,请考虑使用bibtex引用我们的工作: @incollection{jadon2021improving, title={Improving Siamese Networks for One-Shot Learning Using Kerne

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明