Machine-Learning-Studies-源码

上传者: 42131785 | 上传时间: 2021-03-21 09:11:56 | 文件大小: 2.63MB | 文件类型: ZIP
机器学习研究 我创建了这个存储库来存储我的机器学习研究文件。 将来,我还计划将理论内容放到所研究的每个主题上,因此该存储库可作为理论和实践主题的快速参考。 随时查看每个主题 :grinning_face_with_smiling_eyes: (总是欢迎您提出有关如何改进代码和此存储库的建议,以及有关学习资料的提示)

文件下载

资源详情

[{"title":"( 70 个子文件 2.63MB ) Machine-Learning-Studies-源码","children":[{"title":"Machine-Learning-Studies-main","children":[{"title":"Databases","children":[{"title":"credit_data.csv <span style='color:#111;'> 115.04KB </span>","children":null,"spread":false},{"title":"house_prices.csv <span style='color:#111;'> 2.40MB </span>","children":null,"spread":false},{"title":"mercado.csv <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"credit_card_clients.csv <span style='color:#111;'> 2.73MB </span>","children":null,"spread":false},{"title":"plano_saude.csv <span style='color:#111;'> 94B </span>","children":null,"spread":false},{"title":"mercado2.csv <span style='color:#111;'> 295.81KB </span>","children":null,"spread":false},{"title":"risco_credito2.csv <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"census.csv <span style='color:#111;'> 3.79MB </span>","children":null,"spread":false},{"title":"risco_credito.csv <span style='color:#111;'> 525B </span>","children":null,"spread":false},{"title":"plano_saude2.csv <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"Tweets_Mg.csv <span style='color:#111;'> 1.76MB </span>","children":null,"spread":false}],"spread":false},{"title":"Pre-Processing","children":[{"title":"outlier_boxplot.py <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"kernel_PCA_census.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"LDA_census.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"pre_processamento_census_data.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"PCA_census.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"template_credit_data.py <span style='color:#111;'> 647B </span>","children":null,"spread":false},{"title":"PyOD.py <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"pre_processamento_credit_data.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"Decision Tree","children":[{"title":"arvore_decisao_credit_data.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"arvore_decisao_census_data.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"arvore_decisao_risco_credito.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"arvore.dot <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"kNN","children":[{"title":"knn_census_data.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"knn_credit_data.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"Artificial-Neural-Networks","children":[{"title":"redes_neurais_sklearn_census_data.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"redes_neurais_sklearn_credit_data.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"redes_neurais_pybrain_mais_automatica.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"redes_neurais_pybrain.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"SVM","children":[{"title":"svm_census.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"svm_credit_data.py <span style='color:#111;'> 998B </span>","children":null,"spread":false}],"spread":true},{"title":"Logistic-Regression","children":[{"title":"regressao_logistica_census_data.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"regressao_logistica_credit_data.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"regressao_logistica_risco_credito.py <span style='color:#111;'> 806B </span>","children":null,"spread":false}],"spread":true},{"title":"Linear-Regression","children":[{"title":"regressao_polinomial_houses_price.py <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"regressao_linear_multipla_houses_price.py <span style='color:#111;'> 959B </span>","children":null,"spread":false},{"title":"regressao_arvore_decisao_plano_saude.py <span style='color:#111;'> 723B </span>","children":null,"spread":false},{"title":"regressao_arvore_decisao_house_prices.py <span style='color:#111;'> 698B </span>","children":null,"spread":false},{"title":"regressao_support_vector_regressor_plano_saude.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"regressao_ann_house_prices.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"regressao_linear_simples_houses_price.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"regressao_random_forest_plano_saude.py <span style='color:#111;'> 614B </span>","children":null,"spread":false},{"title":"regressao_linear_simples_plano_saude.py <span style='color:#111;'> 797B </span>","children":null,"spread":false},{"title":"regressao_ann_plano_saude.py <span style='color:#111;'> 655B </span>","children":null,"spread":false},{"title":"regressao_random_forest_house_prices.py <span style='color:#111;'> 818B </span>","children":null,"spread":false},{"title":"regressao_support_vector_regressor_house_prices.py <span style='color:#111;'> 1019B </span>","children":null,"spread":false},{"title":"regressao_polinomial_plano_saude.py <span style='color:#111;'> 923B </span>","children":null,"spread":false}],"spread":false},{"title":"Cross-Validation","children":[{"title":"combinacao_de_classificadores.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"validacao_cruzada_cross_val_score.py <span style='color:#111;'> 787B </span>","children":null,"spread":false},{"title":"validacao_cruzada_stratified_k_fold.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"validacao_cruzada_stratified_k_fold_confusion_matrix.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"Clustering","children":[{"title":"agrupamento_hierarquico.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"agrupamento_hierarquico_cartao_credito.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"k_means_exemplo2.py <span style='color:#111;'> 304B </span>","children":null,"spread":false},{"title":"k_means_cartao_credito.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"DBSCAN_cartao_credito.py <span style='color:#111;'> 854B </span>","children":null,"spread":false},{"title":"k_means_cartao_credito2.py <span style='color:#111;'> 927B </span>","children":null,"spread":false},{"title":"Comparing_clustering_algorithms.py <span style='color:#111;'> 828B </span>","children":null,"spread":false},{"title":"k_means_exemplo1.py <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"DBSCAN.py <span style='color:#111;'> 820B </span>","children":null,"spread":false}],"spread":true},{"title":"Association-Rules","children":[{"title":"regras_associacao_apriori_mercado_1.py <span style='color:#111;'> 653B </span>","children":null,"spread":false},{"title":"apyori.py <span style='color:#111;'> 14.21KB </span>","children":null,"spread":false},{"title":"regras_associacao_apriori_mercado_2.py <span style='color:#111;'> 677B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"Random-Forest","children":[{"title":"random_forest_credit_data.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"random_forest_census_data.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"Naive Bayes","children":[{"title":"naive_bayes_sentiment_analysis.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"naive_bayes_risco_credito.py <span style='color:#111;'> 743B </span>","children":null,"spread":false},{"title":"naive_bayes_census_data.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"naive_bayes_credit_data.py <span style='color:#111;'> 1013B </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明