PLARD:用于道路检测的渐进式LiDAR自适应-源码

上传者: 42131705 | 上传时间: 2021-09-20 22:10:21 | 文件大小: 319KB | 文件类型: ZIP
平板 在PyTorch中实施的渐进式LiDAR自适应道路检测 该存储库再现了PyTorch中PLARD 的结果。 该代码主要基于 。 抽象的 尽管基于视觉图像的道路检测技术发展Swift,但由于光照变化和图像模糊等问题,如何在视觉图像中可靠地识别道路区域仍然具有挑战性。 为此,可以将LiDAR传感器数据并入以改进基于视觉图像的道路检测,因为LiDAR数据不易受到视觉噪声的影响。 但是,将LiDAR信息引入基于视觉图像的道路检测中的主要困难是LiDAR数据及其提取的特征与视觉数据和视觉特征不会共享相同的空间。 这样的空间间隙可能会限制LiDAR信息在道路检测中的优势。 为了克服这个问题,我们引入了一种新颖的渐进式LiDAR自适应道路检测(PLARD)方法,以将LiDAR信息适应基于可视图像的道路检测并提高检测性能。 在PLARD中,渐进式LiDAR适应包括两个后续模块:1)数据空间适应,通过

文件下载

资源详情

[{"title":"( 40 个子文件 319KB ) PLARD:用于道路检测的渐进式LiDAR自适应-源码","children":[{"title":"PLARD-master","children":[{"title":".gitignore <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"main.png <span style='color:#111;'> 238.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"codes-for-ADI","children":[{"title":"bsd.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"cvt_point_cloud_to_ADI.m <span style='color:#111;'> 7.54KB </span>","children":null,"spread":false},{"title":"compute_altitude_difference_image.m <span style='color:#111;'> 633B </span>","children":null,"spread":false}],"spread":true},{"title":"config.json <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"ptsemseg","children":[{"title":"augmentations.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"frrn.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"plard.py <span style='color:#111;'> 14.96KB </span>","children":null,"spread":false},{"title":"fcn.py <span style='color:#111;'> 12.46KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 22.47KB </span>","children":null,"spread":false},{"title":"pspnet.py <span style='color:#111;'> 14.78KB </span>","children":null,"spread":false},{"title":"segnet.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"linknet.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"icnet.py <span style='color:#111;'> 18.32KB </span>","children":null,"spread":false},{"title":"refinenet.py <span style='color:#111;'> 635B </span>","children":null,"spread":false}],"spread":false},{"title":"utils.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"voc_eval.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"loader","children":[{"title":"nyuv2_loader.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"sunrgbd_loader.py <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"kitti_road_loader.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"ade20k_loader.py <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"camvid_loader.py <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"mit_sceneparsing_benchmark_loader.py <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"mapillary_loader.py <span style='color:#111;'> 10.06KB </span>","children":null,"spread":false},{"title":"pascal_voc_loader.py <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"cityscapes_loader.py <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"caffe_pb2.py <span style='color:#111;'> 274.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明