[{"title":"( 84 个子文件 102.49MB ) Spatio-Temporal-Data:存储与时空数据处理、预测相关的论文、代码仓库","children":[{"title":"Spatio-Temporal-Data-master","children":[{"title":"md","children":[{"title":"Demand_Prediction.md <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"Survey.md <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"flows_prediction","children":[{"title":"AutoST.png <span style='color:#111;'> 84.84KB </span>","children":null,"spread":false},{"title":"k-nearest.png <span style='color:#111;'> 36.87KB </span>","children":null,"spread":false},{"title":"20210418145535.png <span style='color:#111;'> 90.42KB </span>","children":null,"spread":false},{"title":"ST-MetaNet.png <span style='color:#111;'> 122.83KB </span>","children":null,"spread":false},{"title":"DSAN.png <span style='color:#111;'> 55.61KB </span>","children":null,"spread":false},{"title":"MDL.png <span style='color:#111;'> 259.65KB </span>","children":null,"spread":false},{"title":"SPN.png <span style='color:#111;'> 187.33KB </span>","children":null,"spread":false},{"title":"GEML.png <span style='color:#111;'> 104.06KB </span>","children":null,"spread":false},{"title":"self_attention.png <span style='color:#111;'> 84.10KB </span>","children":null,"spread":false},{"title":"ResLSTM.png <span style='color:#111;'> 110.30KB </span>","children":null,"spread":false},{"title":"MGSTC.png <span style='color:#111;'> 216.97KB </span>","children":null,"spread":false},{"title":"STDN.png <span style='color:#111;'> 195.94KB </span>","children":null,"spread":false},{"title":"MsCCFP.png <span style='color:#111;'> 83.82KB </span>","children":null,"spread":false},{"title":"PVCGN.png <span style='color:#111;'> 39.80KB </span>","children":null,"spread":false},{"title":"ST-ResNet.png <span style='color:#111;'> 149.77KB </span>","children":null,"spread":false},{"title":"Multi-view deep learning framework.png <span style='color:#111;'> 141.11KB </span>","children":null,"spread":false},{"title":"STAR.png <span style='color:#111;'> 177.13KB </span>","children":null,"spread":false},{"title":"DeepSTD.png <span style='color:#111;'> 126.84KB </span>","children":null,"spread":false},{"title":"SRCNs.png <span style='color:#111;'> 79.76KB </span>","children":null,"spread":false},{"title":"UrbanFM.png <span style='color:#111;'> 254.10KB </span>","children":null,"spread":false},{"title":"GeoMAN.png <span style='color:#111;'> 99.75KB </span>","children":null,"spread":false},{"title":"GSTNet.png <span style='color:#111;'> 116.80KB </span>","children":null,"spread":false},{"title":"ASTGCN.png <span style='color:#111;'> 64.89KB </span>","children":null,"spread":false},{"title":"STSGCM.png <span style='color:#111;'> 74.93KB </span>","children":null,"spread":false}],"spread":false},{"title":"demand_prediction","children":[{"title":"Taxi3D.png <span style='color:#111;'> 327.12KB </span>","children":null,"spread":false},{"title":"GEML.png <span style='color:#111;'> 103.84KB </span>","children":null,"spread":false},{"title":"AttConvLSTM.png <span style='color:#111;'> 105.27KB </span>","children":null,"spread":false},{"title":"STG2Seq.png <span style='color:#111;'> 42.74KB </span>","children":null,"spread":false},{"title":"CoST-Net.png <span style='color:#111;'> 176.51KB </span>","children":null,"spread":false},{"title":"DL-LSTM.png <span style='color:#111;'> 130.30KB </span>","children":null,"spread":false},{"title":"H-CNN.png <span style='color:#111;'> 62.59KB </span>","children":null,"spread":false},{"title":"pmlLSTM.png <span style='color:#111;'> 84.49KB </span>","children":null,"spread":false},{"title":"DMVST-Net.png <span style='color:#111;'> 179.58KB </span>","children":null,"spread":false},{"title":"DTCNN.png <span style='color:#111;'> 205.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".vscode","children":[{"title":"settings.json <span style='color:#111;'> 3B </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"DeepST-ResNet-master.zip <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"papper","children":[{"title":"flows_prediction","children":[{"title":"AutoST Efficient Neural Architecture Search for.pdf <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"star_mdm19.pdf <span style='color:#111;'> 567.83KB </span>","children":null,"spread":false},{"title":"0317.pdf <span style='color:#111;'> 764.95KB </span>","children":null,"spread":false},{"title":"ST-Attn Spatial-Temporal Attention Mechanism for.pdf <span style='color:#111;'> 446.67KB </span>","children":null,"spread":false},{"title":"TITS.2014.2337238.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"3881-Article Text-6940-1-10-20190702.pdf <span style='color:#111;'> 1.17MB </span>","children":null,"spread":false},{"title":"6819-Article Text-10048-1-10-20200524.pdf <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"TITS.2019.2906365.pdf <span style='color:#111;'> 54.91KB </span>","children":null,"spread":false},{"title":"1903.07789.pdf <span style='color:#111;'> 6.46MB </span>","children":null,"spread":false},{"title":"AdaptiveSeasonalTimeSeriesModelsTRR2024.pdf <span style='color:#111;'> 510.97KB </span>","children":null,"spread":false},{"title":"TITS2932785-proof2.pdf <span style='color:#111;'> 4.43MB </span>","children":null,"spread":false},{"title":"Citywide Traffic Flow Prediction Based on Multiple Gated.pdf <span style='color:#111;'> 3.77MB </span>","children":null,"spread":false},{"title":"Physical-Virtual Collaboration Modeling for.pdf <span style='color:#111;'> 771.48KB </span>","children":null,"spread":false},{"title":"Spatiotemporal Recurrent Convolutional Networks.pdf <span style='color:#111;'> 4.26MB </span>","children":null,"spread":false},{"title":"UrbanFM Inferring Fine Grained Urban Flows.pdf <span style='color:#111;'> 4.47MB </span>","children":null,"spread":false},{"title":"Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.pdf <span style='color:#111;'> 2.40MB </span>","children":null,"spread":false},{"title":"Multi-Graph Convolutional Network for Short-Term Passenger Flow Forecasting.pdf <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false},{"title":"Traffic Flow Prediction With Big Data A Deep L.pdf <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":"Flow Prediction in Spatio-Temporal Networks.pdf <span style='color:#111;'> 7.76MB </span>","children":null,"spread":false},{"title":"Revisiting Convolutional Neural Networks for.pdf <span style='color:#111;'> 1.80MB </span>","children":null,"spread":false},{"title":"Revisiting Spatial-Temporal Similarity.pdf <span style='color:#111;'> 550.48KB </span>","children":null,"spread":false},{"title":"TITS.2020.3000761.pdf <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"An Improved K-nearest Neighbor Model for Short-term Traffic.pdf <span style='color:#111;'> 647.05KB </span>","children":null,"spread":false},{"title":"2006.08849.pdf <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"1909.02902.pdf <span style='color:#111;'> 6.83MB </span>","children":null,"spread":false},{"title":"UrbanTrafficPredictionfromSpatio-TemporalDataUsingDeepMetaLearning.pdf <span style='color:#111;'> 1.27MB </span>","children":null,"spread":false},{"title":"0476.pdf <span style='color:#111;'> 815.41KB </span>","children":null,"spread":false},{"title":"5438-Article Text-8663-1-10-20200511.pdf <span style='color:#111;'> 942.81KB </span>","children":null,"spread":false}],"spread":false},{"title":"demand_prediction","children":[{"title":"Predicting Taxi Demand Based on 3D Convolutional.pdf <span style='color:#111;'> 3.28MB </span>","children":null,"spread":false},{"title":"Combining time-series and textual data for taxi demand.pdf <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction.pdf <span style='color:#111;'> 512.85KB </span>","children":null,"spread":false},{"title":"Origin-Destination Matrix Prediction via Graph Convolution a.pdf <span style='color:#111;'> 3.58MB </span>","children":null,"spread":false},{"title":"TITS-Hexagon-BasedConvolutionalNeuralNetworkforsupply-demandforecasting.pdf <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"Traffic Demand Prediction Based on Dynamic.pdf <span style='color:#111;'> 4.94MB </span>","children":null,"spread":false},{"title":"Taxi Demand Prediction Using Parallel Multi-Task Learning Model.pdf <span style='color:#111;'> 3.88MB </span>","children":null,"spread":false},{"title":"Co-Prediction of Multiple Transportation Demands Based.pdf <span style='color:#111;'> 1.51MB </span>","children":null,"spread":false},{"title":"Predicting Multi-step Citywide Passenger Demands Using.pdf <span style='color:#111;'> 1.17MB </span>","children":null,"spread":false},{"title":"STG2Seq Spatial-temporal Graph to Sequence Model.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false}],"spread":true},{"title":"Survey","children":[{"title":"Multiple-Aspect-Analysis-of-Semantic-Trajectories.pdf <span style='color:#111;'> 13.30MB </span>","children":null,"spread":false},{"title":"UrbanComputing-zheng-2014.pdf <span style='color:#111;'> 2.62MB </span>","children":null,"spread":false},{"title":"Graph-Based-Deep-Learning.pdf <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"Deep-Neural-Network-for-Traffic-Prediction.pdf <span style='color:#111;'> 578.95KB </span>","children":null,"spread":false},{"title":"Batman-or-the-Joker.pdf <span style='color:#111;'> 3.81MB </span>","children":null,"spread":false},{"title":"Urban-flow-prediction-from-spatiotemporal-data-using-machine-learning.pdf <span style='color:#111;'> 832.76KB </span>","children":null,"spread":false},{"title":"Deep-Learning-for-Spatio-Temporal-Data-Mining.pdf <span style='color:#111;'> 2.07MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]