GAN-Matlab基础:MAT中GAN的实现-源码

上传者: 42131618 | 上传时间: 2021-05-13 09:00:28 | 文件大小: 44KB | 文件类型: ZIP
GAN-Matlab基础:MAT中GAN的实现

文件下载

资源详情

[{"title":"( 62 个子文件 44KB ) GAN-Matlab基础:MAT中GAN的实现-源码","children":[{"title":"GAN-Base-on-Matlab-master","children":[{"title":".gitignore <span style='color:#111;'> 5B </span>","children":null,"spread":false},{"title":"activation","children":[{"title":"delta_activation_function.m <span style='color:#111;'> 559B </span>","children":null,"spread":false},{"title":"leaky_relu.m <span style='color:#111;'> 169B </span>","children":null,"spread":false},{"title":"relu.m <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"sigmoid.m <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"delta_sigmoid.m <span style='color:#111;'> 213B </span>","children":null,"spread":false},{"title":"delta_tanh.m <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"activate_z.m <span style='color:#111;'> 472B </span>","children":null,"spread":false},{"title":"delta_leaky_relu.m <span style='color:#111;'> 157B </span>","children":null,"spread":false},{"title":"delta_relu.m <span style='color:#111;'> 144B </span>","children":null,"spread":false}],"spread":true},{"title":"nerual_network_flow","children":[{"title":"nn_ff.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"nn_setup.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"nn_bp_g.m <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"nn_applygrads_adam.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"nn_applygrads_sgd.m <span style='color:#111;'> 602B </span>","children":null,"spread":false},{"title":"nn_bp_d.m <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"example_1.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"setup_environment.m <span style='color:#111;'> 296B </span>","children":null,"spread":false},{"title":"layer","children":[{"title":"setup_sub_sampling_layer.m <span style='color:#111;'> 389B </span>","children":null,"spread":false},{"title":"setup_fully_connect_layer.m <span style='color:#111;'> 704B </span>","children":null,"spread":false},{"title":"conv2d_transpose.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"setup_reshape_layer.m <span style='color:#111;'> 454B </span>","children":null,"spread":false},{"title":"atrous_conv2d.m <span style='color:#111;'> 893B </span>","children":null,"spread":false},{"title":"setup_conv2d_transpose_layer.m <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"setup_conv2d_layer.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"setup_batch_norm_layer.m <span style='color:#111;'> 751B </span>","children":null,"spread":false},{"title":"conv2d.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"batch_norm.m <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"reshape_operation.m <span style='color:#111;'> 300B </span>","children":null,"spread":false},{"title":"sub_sample.m <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"check_layer_field_names.m <span style='color:#111;'> 579B </span>","children":null,"spread":false},{"title":"setup_atrous_conv2d_layer.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false}],"spread":false},{"title":"error_term","children":[{"title":"get_error_term_from_conv2d_transpose_layer.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"get_error_term_from_batch_norm_layer.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"get_error_term_from_atrous_conv2d_layer.m <span style='color:#111;'> 553B </span>","children":null,"spread":false},{"title":"get_error_term_from_conv2d_layer.m <span style='color:#111;'> 554B </span>","children":null,"spread":false},{"title":"delta_sigmoid_cross_entropy.m <span style='color:#111;'> 694B </span>","children":null,"spread":false},{"title":"get_error_term_from_fully_connect_layer.m <span style='color:#111;'> 121B </span>","children":null,"spread":false},{"title":"sigmoid_cross_entropy.m <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"get_error_term_from_sub_sampling_layer.m <span style='color:#111;'> 374B </span>","children":null,"spread":false},{"title":"get_error_term_from_reshape_layer.m <span style='color:#111;'> 137B </span>","children":null,"spread":false}],"spread":true},{"title":"example_4.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"example_3.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"util","children":[{"title":"padding_height_width_in_array.m <span style='color:#111;'> 476B </span>","children":null,"spread":false},{"title":"argparse.m <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"flipall.m <span style='color:#111;'> 77B </span>","children":null,"spread":false},{"title":"expand.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"save_images.m <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"insert_zeros_into_array.m <span style='color:#111;'> 329B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"gan_train.m <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"gradient","children":[{"title":"calculate_gradient_for_fully_connect_layer.m <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"calculate_gradient_for_conv2d_layer.m <span style='color:#111;'> 739B </span>","children":null,"spread":false},{"title":"calculate_gradient_for_conv2d_transpose_layer.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"calculate_gradient_for_atrous_conv2d_layer.m <span style='color:#111;'> 772B </span>","children":null,"spread":false},{"title":"calculate_gradient_for_batch_norm_layer.m <span style='color:#111;'> 731B </span>","children":null,"spread":false}],"spread":true},{"title":"example_2.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"readme_images","children":[{"title":"2.png <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"test","children":[{"title":"convolution_process.m <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明