MAMS-for-ABSA:用于基于方面的情感分析的多方面多情感数据集-源码

上传者: 42131414 | 上传时间: 2021-04-26 17:34:51 | 文件大小: 686KB | 文件类型: ZIP
MAMS for ABSA 此存储库包含论文“ EMCLP-IJCNLP 2019, 挑战数据集和基于方面的情感分析的有效模型”的数据和代码。 彩信 MAMS是用于基于方面的情感分析(ABSA)的挑战数据集,其中每个句子包含至少两个具有不同情感极性的方面。 MAMS数据集包含两个版本:一个用于方面术语情感分析(ATSA),另一个用于方面类别情感分析(ACSA)。 要求 pytorch==1.1.0 spacy==2.1.8 pytorch-pretrained-bert==0.6.2 adabound==0.0.5 pyyaml==5.1.2 numpy==1.17.2 scikit-learn==0.21.3 scipy==1.3.1 快速开始 将经过预训练的GloVe( )文件glove.840B.300d.txt放在./data文件夹中。 修改config.py以选择任务,模型和

文件下载

资源详情

[{"title":"( 46 个子文件 686KB ) MAMS-for-ABSA:用于基于方面的情感分析的多方面多情感数据集-源码","children":[{"title":"MAMS-for-ABSA-master","children":[{"title":"data","children":[{"title":"MAMS-ATSA","children":[{"title":"raw","children":[{"title":"test.xml <span style='color:#111;'> 192.05KB </span>","children":null,"spread":false},{"title":"val.xml <span style='color:#111;'> 191.13KB </span>","children":null,"spread":false},{"title":"train.xml <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"MAMS-ACSA","children":[{"title":"raw","children":[{"title":"test.xml <span style='color:#111;'> 133.41KB </span>","children":null,"spread":false},{"title":"val.xml <span style='color:#111;'> 132.22KB </span>","children":null,"spread":false},{"title":"train.xml <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"sentiment_dict.json <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"aspect_term_model","children":[{"title":"recurrent_capsnet.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"capsnet.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"bert_capsnet.py <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"aspect_category_model","children":[{"title":"recurrent_capsnet.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"capsnet.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"bert_capsnet.py <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"module","children":[{"title":"attention","children":[{"title":"concat_attention.py <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"scaled_dot_attention.py <span style='color:#111;'> 499B </span>","children":null,"spread":false},{"title":"bilinear_attention.py <span style='color:#111;'> 659B </span>","children":null,"spread":false},{"title":"dot_attention.py <span style='color:#111;'> 448B </span>","children":null,"spread":false},{"title":"no_query_attention.py <span style='color:#111;'> 566B </span>","children":null,"spread":false},{"title":"tanh_concat_attention.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"tanh_bilinear_attention.py <span style='color:#111;'> 740B </span>","children":null,"spread":false},{"title":"mlp_attention.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"multi_head_attention.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"sentence_clip.py <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"constants.py <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"squash.py <span style='color:#111;'> 161B </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 129B </span>","children":null,"spread":false},{"title":"train","children":[{"title":"make_optimizer.py <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 829B </span>","children":null,"spread":false},{"title":"make_aspect_category_model.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"make_aspect_term_model.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"make_data.py <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_process","children":[{"title":"data_process.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 9.86KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"vocab.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"config.yml <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 262B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明