Local-Crowd-Counting:具有局部计数图的自适应混合回归网络用于人群计数(ECCV2020)

上传者: 42131013 | 上传时间: 2021-07-13 19:30:09 | 文件大小: 3.85MB | 文件类型: ZIP
ECCV2020:具有本地计数图的人群混合自适应回归网络 介绍 在这项工作中,我们介绍了一个称为局部计数图的新学习目标,并显示了其在局部计数回归中的可行性和优势。 同时,我们提出了一种从粗到精的方式的自适应混合回归框架。 它报告了计数准确性和训练阶段稳定性的显着提高,并在几个权威数据集上实现了最先进的性能。 有关更多详细信息,请参阅我们的。 框架 演示版 入门 先决条件 Python> = 3.5 火炬> = 1.0.1 其他库在requirements.txt ,运行pip install -r requirements.txt 。 资料准备 从官方网站下载ShanghaiTech, UCF-QNRF, UCF_CC_50数据集,并将其解压缩到./ProcessedData 。 运行cd ./datasets/XXX/和python prepare_XXX_mod64.py调整图

文件下载

资源详情

[{"title":"( 61 个子文件 3.85MB ) Local-Crowd-Counting:具有局部计数图的自适应混合回归网络用于人群计数(ECCV2020)","children":[{"title":"Local-Crowd-Counting-master","children":[{"title":"models","children":[{"title":"trainer_for_LCM.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"CC_LCM.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"CC_DM.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"trainer_for_DM.py <span style='color:#111;'> 6.60KB </span>","children":null,"spread":false},{"title":"SCC_Model","children":[{"title":"ResNet_LCM_v2.py <span style='color:#111;'> 12.47KB </span>","children":null,"spread":false},{"title":"CSRNet_LCM.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"CSRNet_DM.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"VGG16_LCM.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"VGG16_LCM_REG.py <span style='color:#111;'> 10.65KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"VGG16_DM.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"misc","children":[{"title":"transforms.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"layer.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"cal_mean.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 13.79KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"test_config.py <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 292B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 16.01KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 509B </span>","children":null,"spread":false}],"spread":true},{"title":"Local-Crowd-Counting.iml <span style='color:#111;'> 453B </span>","children":null,"spread":false}],"spread":true},{"title":"demo_image","children":[{"title":"crowd1.jpg <span style='color:#111;'> 56.42KB </span>","children":null,"spread":false},{"title":"result","children":[{"title":"crowd3_predcount_1364.jpg <span style='color:#111;'> 696.72KB </span>","children":null,"spread":false},{"title":"crowd2_predmap_289.jpg <span style='color:#111;'> 22.88KB </span>","children":null,"spread":false},{"title":"crowd1_predcount_9.jpg <span style='color:#111;'> 121.51KB </span>","children":null,"spread":false},{"title":"crowd3_predmap_1364.jpg <span style='color:#111;'> 37.62KB </span>","children":null,"spread":false},{"title":"crowd1_predmap_9.jpg <span style='color:#111;'> 14.71KB </span>","children":null,"spread":false},{"title":"crowd2_predcount_289.jpg <span style='color:#111;'> 254.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"crowd3.jpg <span style='color:#111;'> 314.32KB </span>","children":null,"spread":false},{"title":"crowd2.jpg <span style='color:#111;'> 105.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 122B </span>","children":null,"spread":false},{"title":"doc","children":[{"title":"framework.jpg <span style='color:#111;'> 691.61KB </span>","children":null,"spread":false},{"title":"demo.jpg <span style='color:#111;'> 2.13MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"SHHA","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"loading_data.py <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"SHHA.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"setting.py <span style='color:#111;'> 546B </span>","children":null,"spread":false},{"title":"preapre_SHHA_mod64.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"SHHB","children":[{"title":"preapre_SHHB_mod64.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"SHHB.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"loading_data.py <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"setting.py <span style='color:#111;'> 540B </span>","children":null,"spread":false}],"spread":false},{"title":"get_density_map_gaussian.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"QNRF","children":[{"title":"QNRF.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"preapre_QNRF_mod64.py <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"loading_data.py <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"setting.py <span style='color:#111;'> 524B </span>","children":null,"spread":false}],"spread":false},{"title":"UCF50","children":[{"title":"UCF50.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"loading_data.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"setting.py <span style='color:#111;'> 556B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明