ant-learn-recsys:推荐系统从入门到实战-源码

上传者: 42130889 | 上传时间: 2021-03-11 15:07:26 | 文件大小: 59.42MB | 文件类型: ZIP
蚂蚁学习记录系统 推荐系统从入门到实战 微信公众号:Ant蚁学Python

文件下载

资源详情

[{"title":"( 85 个子文件 59.42MB ) ant-learn-recsys:推荐系统从入门到实战-源码","children":[{"title":"ant-learn-recsys-master","children":[{"title":"09. Tensorflow使用LR和GBDT和DNN实现银行营销二分类.ipynb <span style='color:#111;'> 55.49KB </span>","children":null,"spread":false},{"title":"15. 推荐系统当前最流行的Embedding算法.ipynb <span style='color:#111;'> 10.48KB </span>","children":null,"spread":false},{"title":"推荐系统系列.pptx <span style='color:#111;'> 2.73MB </span>","children":null,"spread":false},{"title":"08. Python使用Faiss实现向量近邻搜索.ipynb <span style='color:#111;'> 20.45KB </span>","children":null,"spread":false},{"title":"04. Python训练item2vec实现电影相关推荐.ipynb <span style='color:#111;'> 31.99KB </span>","children":null,"spread":false},{"title":"05. Python使用SparkALS矩阵分解实现电影推荐.ipynb <span style='color:#111;'> 28.79KB </span>","children":null,"spread":false},{"title":"02. 训练word2vec实现内容相似推荐.ipynb <span style='color:#111;'> 34.93KB </span>","children":null,"spread":false},{"title":"recsys_papers","children":[{"title":"Collaborative Filtering for Implicit Feedback Datasets.pdf <span style='color:#111;'> 165.17KB </span>","children":null,"spread":false},{"title":"Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba.pdf <span style='color:#111;'> 2.83MB </span>","children":null,"spread":false},{"title":"Movies recommendation system using collaborative filtering and k-means .pdf <span style='color:#111;'> 630.81KB </span>","children":null,"spread":false},{"title":"BERT Pre-training of Deep Bidirectional Transformers for Language Understanding.pdf <span style='color:#111;'> 757.00KB </span>","children":null,"spread":false},{"title":"Wide & Deep Learning for Recommender Systems.pdf <span style='color:#111;'> 400.36KB </span>","children":null,"spread":false},{"title":"Deep Neural Networks for YouTube Recommendations.pdf <span style='color:#111;'> 877.44KB </span>","children":null,"spread":false},{"title":"Item2Vec- Neural Item Embedding for Collaborative FilteringItem2Vec- Neural Item Embedding for Collaborative Filtering.pdf <span style='color:#111;'> 988.82KB </span>","children":null,"spread":false},{"title":"DeepFM A Factorization-Machine based Neural Network for CTR Prediction.pdf <span style='color:#111;'> 814.41KB </span>","children":null,"spread":false},{"title":"Factorization Machines.pdf <span style='color:#111;'> 187.15KB </span>","children":null,"spread":false},{"title":"Next Item Recommendation with Self-A‚ttention.pdf <span style='color:#111;'> 2.16MB </span>","children":null,"spread":false},{"title":"Practical Lessons from Predicting Clicks on Ads at Facebook.pdf <span style='color:#111;'> 773.88KB </span>","children":null,"spread":false},{"title":"Inductive Representation Learning on Large Graphs.pdf <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"A-Quick-Guide-to-Recommendations-using-Redis.pdf <span style='color:#111;'> 276.08KB </span>","children":null,"spread":false},{"title":"Faiss A Survey of Product Quantization.pdf <span style='color:#111;'> 434.43KB </span>","children":null,"spread":false},{"title":"Matrix Factorization Techniques For Recommender Systems.pdf <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":"Item-Based Collaborative Filtering Recommendation Algorithms.pdf <span style='color:#111;'> 243.91KB </span>","children":null,"spread":false},{"title":"Amazon.com recommendations- item-to-item collaborative filtering.pdf <span style='color:#111;'> 359.21KB </span>","children":null,"spread":false},{"title":"Real-time Personalization using Embeddings for Search Ranking at Airbnb.pdf <span style='color:#111;'> 9.74MB </span>","children":null,"spread":false},{"title":"Deep Learning Recommendation Model for Personalization and Recommendation Systems.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"Multi-Interest Network with Dynamic Routing for Recommendation at Tmall.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false}],"spread":false},{"title":"03. 使用腾讯开源Word2vec实现内容相似推荐.ipynb <span style='color:#111;'> 26.37KB </span>","children":null,"spread":false},{"title":"06. Python实现基于标签的推荐系统.ipynb <span style='color:#111;'> 21.07KB </span>","children":null,"spread":false},{"title":"ant-recsys-wb","children":[{"title":"app.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"app.cpython-37.pyc <span style='color:#111;'> 379B </span>","children":null,"spread":false}],"spread":true},{"title":"user_rating.py <span style='color:#111;'> 280B </span>","children":null,"spread":false},{"title":"resources","children":[{"title":"ratings.csv <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"movies.csv <span style='color:#111;'> 473.33KB </span>","children":null,"spread":false},{"title":"item_embedding.csv <span style='color:#111;'> 783.85KB </span>","children":null,"spread":false},{"title":"user_embedding.csv <span style='color:#111;'> 1.23MB </span>","children":null,"spread":false}],"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 360B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 183B </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 487B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"ant-recsys-wb.iml <span style='color:#111;'> 732B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"embedding_manager.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"movie_info.py <span style='color:#111;'> 419B </span>","children":null,"spread":false}],"spread":true},{"title":"01. 推荐系统开发环境检测.ipynb <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"07. Tensorflow2实现推荐系统双塔DNN排序.ipynb <span style='color:#111;'> 39.12KB </span>","children":null,"spread":false},{"title":"datas","children":[{"title":"movielens_uid_movieids.csv <span style='color:#111;'> 239.98KB </span>","children":null,"spread":false},{"title":"bank","children":[{"title":"bank-full.csv <span style='color:#111;'> 4.40MB </span>","children":null,"spread":false}],"spread":false},{"title":"crazyant_blog_articles_wordsegs.csv <span style='color:#111;'> 843.10KB </span>","children":null,"spread":false},{"title":"crazyant_blog_articles.xlsx <span style='color:#111;'> 22.45KB </span>","children":null,"spread":false},{"title":"movielens_movie_embedding.csv <span style='color:#111;'> 695.63KB </span>","children":null,"spread":false},{"title":"crazyant_blog_articles_word2vec.csv <span style='color:#111;'> 41.01KB </span>","children":null,"spread":false},{"title":"small_tencent_embedding.txt <span style='color:#111;'> 20.68MB </span>","children":null,"spread":false},{"title":"als","children":[{"title":"sample_movielens_ratings.txt <span style='color:#111;'> 31.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"movielens_sparkals_item_embedding.csv <span style='color:#111;'> 783.85KB </span>","children":null,"spread":false},{"title":"crazyant_blog_articles_wordsegs.xlsx <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"movielens_sparkals_user_embedding.csv <span style='color:#111;'> 1.23MB </span>","children":null,"spread":false},{"title":"ml-latest-small","children":[{"title":"tensorflow_movie_datawithindex.csv <span style='color:#111;'> 167.79KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 8.15KB </span>","children":null,"spread":false},{"title":"tensorflow_user_datawithindex.csv <span style='color:#111;'> 173.73KB </span>","children":null,"spread":false},{"title":"tensorflow_user_embedding.csv <span style='color:#111;'> 347.10KB </span>","children":null,"spread":false},{"title":"ratings.csv <span style='color:#111;'> 2.37MB </span>","children":null,"spread":false},{"title":"tags.csv <span style='color:#111;'> 115.88KB </span>","children":null,"spread":false},{"title":"movies.csv <span style='color:#111;'> 482.84KB </span>","children":null,"spread":false},{"title":"tensorflow_movie_embedding.csv <span style='color:#111;'> 190.73KB </span>","children":null,"spread":false},{"title":"tensorflow_two_tower.h5 <span style='color:#111;'> 7.72MB </span>","children":null,"spread":false},{"title":"links.csv <span style='color:#111;'> 193.34KB </span>","children":null,"spread":false},{"title":"ratings_1m.csv <span style='color:#111;'> 20.59MB </span>","children":null,"spread":false}],"spread":false},{"title":"wp_posts.json <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false},{"title":"ml-1m","children":[{"title":"movies.dat <span style='color:#111;'> 167.29KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"ratings.dat <span style='color:#111;'> 23.45MB </span>","children":null,"spread":false},{"title":"users.dat <span style='color:#111;'> 131.22KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"08. Python使用Faiss实现向量近邻搜索-checkpoint.ipynb <span style='color:#111;'> 20.45KB </span>","children":null,"spread":false},{"title":"09. Tensorflow使用LR和GBDT和DNN实现银行营销二分类-checkpoint.ipynb <span style='color:#111;'> 55.49KB </span>","children":null,"spread":false},{"title":"15. 推荐系统当前最流行的Embedding算法-checkpoint.ipynb <span style='color:#111;'> 10.48KB </span>","children":null,"spread":false},{"title":"06. Python实现基于标签的推荐系统-checkpoint.ipynb <span style='color:#111;'> 21.07KB </span>","children":null,"spread":false},{"title":"04. Python训练item2vec实现电影相关推荐-checkpoint.ipynb <span style='color:#111;'> 31.99KB </span>","children":null,"spread":false},{"title":"05. Python使用SparkALS矩阵分解实现电影推荐-checkpoint.ipynb <span style='color:#111;'> 28.79KB </span>","children":null,"spread":false},{"title":"07. Tensorflow2实现推荐系统双塔DNN排序-checkpoint.ipynb <span style='color:#111;'> 38.93KB </span>","children":null,"spread":false},{"title":"03. 使用腾讯开源Word2vec实现内容相似推荐-checkpoint.ipynb <span style='color:#111;'> 26.37KB </span>","children":null,"spread":false},{"title":"01. 推荐系统开发环境检测-checkpoint.ipynb <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 85B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明