Channel-Estimation-and-Hybrid-Precoding-for-Millimeter-Wave-Systems-Based-on-Deep-Learning-源码

上传者: 42130889 | 上传时间: 2021-11-04 15:10:33 | 文件大小: 32.42MB | 文件类型: -
基于深度学习的毫米波系统的信道估计和混合预编码 将“ matlab”和“ python”文件夹放在根目录中 “ matlab”文件夹包含传统的HBF算法,信道估计算法和数据生成代码。 “ python”文件包含已定义的神经网络模型和经过训练的模型。 如果要直接测试HBF-Net和CE-HBF-Net,则可以 运行“ matlab / channel_gen.m”以生成测试通道。 运行“ matlab / gen_testdata.m”以生成测试数据集 您也可以单击(提取代码:om9r)下载数据集,而无需生成新的测试数据集。 训练后的模型保存在“ python / model”中。 在测试模式(train_flag = 0)下运行“ python / main.py”,可以测试HBF-Net和CE-HBF-Net的性能。 如果您想对HBF-Net和CE-HBF-Net进行再培训,则可以

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明