tensorflow_Realtime_Multi-Person_Pose_Estimation:针对Tensorflow 2.0的多人位姿估计项目,该模型基于MobilenetV3,具有小型快速模型-源码

上传者: 42130786 | 上传时间: 2021-05-27 14:29:31 | 文件大小: 9.14MB | 文件类型: ZIP
Tensorflow 2.0实时多人姿势估计 什么是新的 2020年10月5日 将模型转换为新的 在Mobilenet V3基础上添加了一个新的openpose模型。 添加了对库依赖 标记为“ v1.0”的旧代码可用。 此存储库包含keras_Realtime_Multi-Person_Pose_Estimation项目的新升级版本,以及一些其他脚本和新模型。 我在Tensorboard中添加了最终热图和paf的可视化。 每100次迭代,会将一张图像传递给模型。 预测的热图和paf记录在Tensorboard中。 您可以每隔几个小时检查一次直观的预测显示,因为它可以很好地了解训练的执行情况。 脚本和笔记本 该项目包含以下脚本和jupyter笔记本: train_singlenet_mobilenetv3.py-本文提出的用于新模型的训练代码,。 我用Mobilenet V3替换了VGG。 简化模型,只有3 pafs和1热图。 train_2br_vgg.py-旧的CMU模型的训练代码(2017)。 这是旧仓库keras_Realtime_Multi-Person_Pose_E

文件下载

资源详情

[{"title":"( 41 个子文件 9.14MB ) tensorflow_Realtime_Multi-Person_Pose_Estimation:针对Tensorflow 2.0的多人位姿估计项目,该模型基于MobilenetV3,具有小型快速模型-源码","children":[{"title":"tensorflow_Realtime_Multi-Person_Pose_Estimation-master","children":[{"title":"demo_image.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"openpose_2br_vgg.py <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"openpose_singlenet.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 119B </span>","children":null,"spread":false}],"spread":true},{"title":"demo_video.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"tf_netbuilder_ext","children":[{"title":"extensions.py <span style='color:#111;'> 362B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"layers","children":[{"title":"prep_funcs","children":[{"title":"pose.py <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"inspect_dataset.ipynb <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"train_2br_vgg.py <span style='color:#111;'> 10.36KB </span>","children":null,"spread":false},{"title":"resources","children":[{"title":"ski_368.jpg <span style='color:#111;'> 150.37KB </span>","children":null,"spread":false},{"title":"ski_224.jpg <span style='color:#111;'> 76.80KB </span>","children":null,"spread":false},{"title":"sample1.mp4 <span style='color:#111;'> 2.26MB </span>","children":null,"spread":false},{"title":"sample2.mp4 <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"ski.jpg <span style='color:#111;'> 347.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_openpose_2br_vgg_model.ipynb <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 6.60KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"base_dataflow.py <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false},{"title":"dataflow_steps.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"generators.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"augmentors.py <span style='color:#111;'> 9.50KB </span>","children":null,"spread":false},{"title":"label_maps.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dataflows.py <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"train_singlenet_mobilenetv3.py <span style='color:#111;'> 8.12KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 254B </span>","children":null,"spread":false},{"title":"convert_to_tflite.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"estimation","children":[{"title":"renderers.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"connections.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"coordinates.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 8.51KB </span>","children":null,"spread":false},{"title":"estimators.py <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false}],"spread":false},{"title":"test_openpose_singlenet_model.ipynb <span style='color:#111;'> 1.78MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"test_tflite_models.ipynb <span style='color:#111;'> 22.33KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明