上传者: 42129797
|
上传时间: 2021-12-16 17:06:04
|
文件大小: 1.45MB
|
文件类型: -
使用机器学习进行乳腺癌诊断
该项目的目的是采用UCI机器学习存储库中的乳腺癌威斯康星州(诊断)数据集,并应用Logistic回归,朴素贝叶斯,支持向量机,决策树和多层感知器等机器学习模型来提取特征可能最适合预测癌症性质的数据集。 目的是对乳腺癌是良性还是恶性进行分类。 确定基于模型预测的模型的准确性,以相互分析和比较生成的模型,并从模型中选择最佳模型。 多层感知器是测试过的模型中最准确的模型,准确度为97.2%。