mednli:MedNLI-用于临床领域的自然语言推理数据集

上传者: 42129412 | 上传时间: 2022-12-15 15:54:36 | 文件大小: 45KB | 文件类型: ZIP
MedNLI-临床文本中的自然语言推理 信息 该存储库包含用于完全重现本文中的实验的代码。 因此,它具有相当多的依赖关系,并且安装起来并不容易。 如果您只想使用带有预训练模型的简单现成的基准,请查看我们的基准存储库: : 安装 克隆此仓库: git clone ... 安装NumPy: pip install numpy==1.13.3 安装PyTorch v0.2.0: pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl (请参阅以获取详细信息) 安装要求: pip install -r requirements.txt 安装MetaMap: ://metamap.nlm.nih.gov/Installation.shtml 确

文件下载

资源详情

[{"title":"( 34 个子文件 45KB ) mednli:MedNLI-用于临床领域的自然语言推理数据集","children":[{"title":"mednli-master","children":[{"title":".gitignore <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.34KB </span>","children":null,"spread":false},{"title":"metamap_extract_concepts.py <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"nli.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"text.py <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false},{"title":"file_observer.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"torch","children":[{"title":"rnn.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 36B </span>","children":null,"spread":false},{"title":"nli_dataset.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"data.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"create_retrofitting_data.py <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"parse_umls_create_concepts_graph.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"_config.yml <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"find_uniq_concepts.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"pytorch_multi_target_esim_model.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"pytorch_multi_target_infersent_model.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"pytorch_simple_model.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"pytorch_base_model.py <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 573B </span>","children":null,"spread":false},{"title":"pytorch_infersent_model.py <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"pytorch_multi_target_simple_model.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"pytorch_multi_target_base_model.py <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 394B </span>","children":null,"spread":false},{"title":"pytorch_esim_model.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_model.py <span style='color:#111;'> 20.27KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 539B </span>","children":null,"spread":false},{"title":"pickle_word_vectors.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明