RHGNN:通过PyTorch中的强化学习进行的自适应双曲图卷积神经网络

上传者: 42129300 | 上传时间: 2022-10-26 21:08:44 | 文件大小: 6.5MB | 文件类型: ZIP
PyTorch中的RAHGCN 1.概述 该存储库是PyTorch中通过强化学习(RAHGCN)实现的自适应双曲图卷积神经网络。 下游任务包括: 链接预测( lp ) 节点分类( nc ) 2.设定 2.1下载代码 首先从Github下载源代码。 git clone git@github.com:fuxingcheng/RHGNN.git" cd rahgcn 2.2启动虚拟环境 我们建议在虚拟环境中设置我们的项目。 您可以选择conda或virtualenv来创建和管理虚拟环境。 如果您尚未安装conda,请按照的说明进行安装。 如果尚未安装virtualenv,则只需运行pip3 install virtualenv 。 对于conda : conda env create -f environment.yml python=3.6 source activate ra

文件下载

资源详情

( 70 个子文件 6.5MB ) RHGNN:通过PyTorch中的强化学习进行的自适应双曲图卷积神经网络
RHGNN-main
models
base_models.py 9.77KB
encoders.py 7.43KB
__init__.py 1B
decoders.py 2.24KB
QLearning.py 4.28KB
environment.yml 186B
set_env.bat 200B
optimizers
radam.py 6.81KB
__init__.py 1B
data
webkb
washington.cites 39.67KB
load_webkb.py 1.56KB
wisconsin.content 894.37KB
texas.cites 23.61KB
texas.content 630.74KB
cornell1.cites 2.15KB
wisconsin.cites 40.92KB
cornell.cites 30.10KB
__init__.py 1B
README 1.57KB
webkb.content 2.86MB
cornell.content 660.83KB
convert_webkb.py 733B
washington.content 777.44KB
webkb.cites 13.76KB
citeseer.pt 47.26MB
pubmed
ind.pubmed.x 22.63KB
ind.pubmed.y 854B
ind.pubmed.tx 396.00KB
ind.pubmed.graph 460.75KB
ind.pubmed.ty 11.85KB
ind.pubmed.test.index 5.86KB
ind.pubmed.ally 219.47KB
ind.pubmed.allx 7.23MB
ppi
node2label.txt 119.95KB
features.npy 5.63MB
edges.txt 2.28MB
__init__.py 1B
node2label 119.95KB
labels.txt 3.42MB
cora
ind.cora.test.index 4.88KB
ind.cora.graph 58.44KB
__init__.py 1B
ind.cora.ally 46.83KB
ind.cora.x 21.60KB
ind.cora.ty 27.48KB
ind.cora.allx 251.27KB
ind.cora.y 3.96KB
ind.cora.tx 144.56KB
train.py 8.70KB
manifolds
euclidean.py 1.32KB
hyperboloid.py 4.94KB
__init__.py 141B
poincare.py 4.88KB
base.py 2.52KB
__init__.py 70B
layers
hyp_layers.py 6.23KB
att_layers.py 5.03KB
layers.py 2.33KB
requirements.txt 192B
env.py 3.76KB
set_env.sh 221B
config.py 3.81KB
README.md 10.99KB
utils
train_utils.py 3.00KB
math_utils.py 1.51KB
eval_utils.py 370B
__init__.py 1B
data_utils.py 13.91KB
gat_utils.py 1.28KB
hyperbolicity.py 1.67KB
[{"title":"( 70 个子文件 6.5MB ) RHGNN:通过PyTorch中的强化学习进行的自适应双曲图卷积神经网络","children":[{"title":"RHGNN-main","children":[{"title":"models","children":[{"title":"base_models.py <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"encoders.py <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"decoders.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"QLearning.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"environment.yml <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"set_env.bat <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"optimizers","children":[{"title":"radam.py <span style='color:#111;'> 6.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"webkb","children":[{"title":"washington.cites <span style='color:#111;'> 39.67KB </span>","children":null,"spread":false},{"title":"load_webkb.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"wisconsin.content <span style='color:#111;'> 894.37KB </span>","children":null,"spread":false},{"title":"texas.cites <span style='color:#111;'> 23.61KB </span>","children":null,"spread":false},{"title":"texas.content <span style='color:#111;'> 630.74KB </span>","children":null,"spread":false},{"title":"cornell1.cites <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"wisconsin.cites <span style='color:#111;'> 40.92KB </span>","children":null,"spread":false},{"title":"cornell.cites <span style='color:#111;'> 30.10KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"webkb.content <span style='color:#111;'> 2.86MB </span>","children":null,"spread":false},{"title":"cornell.content <span style='color:#111;'> 660.83KB </span>","children":null,"spread":false},{"title":"convert_webkb.py <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"washington.content <span style='color:#111;'> 777.44KB </span>","children":null,"spread":false},{"title":"webkb.cites <span style='color:#111;'> 13.76KB </span>","children":null,"spread":false}],"spread":false},{"title":"citeseer.pt <span style='color:#111;'> 47.26MB </span>","children":null,"spread":false},{"title":"pubmed","children":[{"title":"ind.pubmed.x <span style='color:#111;'> 22.63KB </span>","children":null,"spread":false},{"title":"ind.pubmed.y <span style='color:#111;'> 854B </span>","children":null,"spread":false},{"title":"ind.pubmed.tx <span style='color:#111;'> 396.00KB </span>","children":null,"spread":false},{"title":"ind.pubmed.graph <span style='color:#111;'> 460.75KB </span>","children":null,"spread":false},{"title":"ind.pubmed.ty <span style='color:#111;'> 11.85KB </span>","children":null,"spread":false},{"title":"ind.pubmed.test.index <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"ind.pubmed.ally <span style='color:#111;'> 219.47KB </span>","children":null,"spread":false},{"title":"ind.pubmed.allx <span style='color:#111;'> 7.23MB </span>","children":null,"spread":false}],"spread":true},{"title":"ppi","children":[{"title":"node2label.txt <span style='color:#111;'> 119.95KB </span>","children":null,"spread":false},{"title":"features.npy <span style='color:#111;'> 5.63MB </span>","children":null,"spread":false},{"title":"edges.txt <span style='color:#111;'> 2.28MB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"node2label <span style='color:#111;'> 119.95KB </span>","children":null,"spread":false},{"title":"labels.txt <span style='color:#111;'> 3.42MB </span>","children":null,"spread":false}],"spread":true},{"title":"cora","children":[{"title":"ind.cora.test.index <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"ind.cora.graph <span style='color:#111;'> 58.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"ind.cora.ally <span style='color:#111;'> 46.83KB </span>","children":null,"spread":false},{"title":"ind.cora.x <span style='color:#111;'> 21.60KB </span>","children":null,"spread":false},{"title":"ind.cora.ty <span style='color:#111;'> 27.48KB </span>","children":null,"spread":false},{"title":"ind.cora.allx <span style='color:#111;'> 251.27KB </span>","children":null,"spread":false},{"title":"ind.cora.y <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"ind.cora.tx <span style='color:#111;'> 144.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"train.py <span style='color:#111;'> 8.70KB </span>","children":null,"spread":false},{"title":"manifolds","children":[{"title":"euclidean.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"hyperboloid.py <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 141B </span>","children":null,"spread":false},{"title":"poincare.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 70B </span>","children":null,"spread":false},{"title":"layers","children":[{"title":"hyp_layers.py <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"att_layers.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 192B </span>","children":null,"spread":false},{"title":"env.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"set_env.sh <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.99KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"train_utils.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"math_utils.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"eval_utils.py <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 13.91KB </span>","children":null,"spread":false},{"title":"gat_utils.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"hyperbolicity.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明
服务器状态检查中...