genre-classification:使用CNN进行音乐流派分类

上传者: 42129300 | 上传时间: 2022-03-23 15:04:32 | 文件大小: 682KB | 文件类型: -
音乐流派分类 使用1D和2D卷积神经网络比较使用频谱图输入和原始音频输入的音乐流派分类。 在此实验中,仅使用每个音频的前20秒。 每个音频样本被分为2秒音频的10个部分。 先决条件 - Python 2 - Numpy - Matplotlib - Scikit-learn - Scikit-plot - Keras - Tensorflow - Kapre - Librosa - ffmpeg 数据集 乔治·扎纳塔基斯(George Tzanetakis)设定的音乐流派数据。 数据集包含1000个音轨,每个音轨长30秒。 它包含10个流派,每个流派由100首曲目代表。 结果(10个纪元) 混淆矩阵 ROC曲线 测试精度 带一维CNN的原始音频输入 0.31 一维CNN的频谱图输入 0.7372 二维CNN的频谱图输入 0.686 参考: Dieleman,Sander和B

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明